DOI QR코드

DOI QR Code

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Gemi, Lokman (Meram Vocational School, Necmettin Erbakan University) ;
  • Madenci, Emrah (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Aksoylu, Ceyhun (Department of Civil Engineering, Konya Technical University) ;
  • Kalkan, İlker (Department of Civil Engineering, Kirikkale University)
  • Received : 2021.05.18
  • Accepted : 2022.10.25
  • Published : 2022.10.25

Abstract

The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

Keywords

References

  1. A. Gonilha, J., Silvestre, N., R. Correia, J., Tita, V. and Martins, D. (2021), "Novel progressive failure model for quasi-orthotropic pultruded FRP structures: Formulation and calibration of parameters (Part I)", Compos. Struct., 255, 112974. https://doi.org/10.1016/j.compstruct.2020.112974.
  2. Abouzied, A. and Masmoudi, R. (2015), "Structural performance of new fully and partially concrete-filled rectangular FRP-tube beams", Construct. Build. Mater., 101, 652-660. https://doi.org/10.1016/j.conbuildmat.2015.10.060.
  3. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) AND Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19), ACI, Farmington Hills, MI, U.S.A.
  4. Ahmed, E. and Sobuz, H.R. (2011), "Experimental study on longterm behavior of CFRP strengthened RC beams under sustained load", Struct. Eng. Mech., 40(1), 105-120, http://dx.doi.org/10.12989/sem.2011.40.1.105.
  5. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2022), "Mechanical steel stitches: An innovative approach for strengthening shear deficiency in undamaged reinforced concrete beams", Buildings, 12(10), 1501. https://doi.org/10.3390/buildings12101501
  6. Aksoylu, C., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095. https://doi.org/10.3390/polym14194095
  7. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Experimental and Numerical Investigation of Load Bearing Capacity of Thinned End Precast Purlin Beams and Solution Proposals", Teknik Dergi. 32(3).
  8. Aksoylu, C., Yazman, S., Onuralp Ozkilic, Y., Gemi, L. and Hakan Arslan, M. (2020), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  9. Al-Rousan, R.Z. (2017), "Shear behavior of RC beams externally strengthened and anchored with CFRP composites", Struct. Eng. Mech., 63(4), 447-456, http://dx.doi.org/10.12989/sem.2017.63.4.447.
  10. Alajarmeh, O., Zeng, X., Aravinthan, T., Shelley, T., Alhawamdeh, M., Mohammed, A. and Schubel, P. (2021), "Compressive behaviour of hollow box pultruded FRP columns with continuous-wound fibres", Thin-Walled Struct., 168, 108300. https://doi.org/10.1016/j.tws.2021.108300
  11. Altin, S., Anil, O., Toptas, T. and Kara, M.E. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct., 11(3), 207-223. https://doi.org/10.12989/scs.2011.11.3.207
  12. Anil, O. and Yilmaz, T. (2015), "Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips", Steel Compos. Struct., 19(2), 417-439. https://doi.org/10.12989/scs.2015.19.2.417
  13. Arslan, M.H., Yazman, S., Hamad, A.A., Aksoylu, C., Ozkilic, Y. O. and Gemi, L. (2022, May). Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics. In Structures, 39, 527-542. https://doi.org/10.1016/j.istruc.2022.03.046
  14. Aydin, F. and Saribiyik, M. (2013), "Investigation of flexural behaviors of hybrid beams formed with GFRP box section and concrete", Construct. Build. Mater., 41, 563-569. https://doi.org/10.1016/j.conbuildmat.2012.12.060.
  15. Baraghith, A.T., Mansour, W., Behiry, R.N. and Fayed, S. (2022), "Effectiveness of SHCC strips reinforced with glass fiber textile mesh layers for shear strengthening of RC beams: Experimental and numerical assessments", Construct. Build. Mater., 327, 127036. https://doi.org/10.1016/j.conbuildmat.2022.127036
  16. Belzer, B.E., Robinson, M.J. and Fick, D.R. (2013), "Composite Action of Concrete-Filled Rectangular GFRP Tubes", J. Compos. Construct., 17(5), 722-731. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000370
  17. Boscato, G. and Ientile, S. (2018), "Experimental and numerical investigation on dynamic properties of thin-walled GFRP buckled columns", Compos. Struct., 189, 273-285. https://doi.org/10.1016/j.compstruct.2018.01.061.
  18. Boukhezar, M., Samai, M.L., Mesbah, H.A. and Houari, H. (2013), "Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates", Struct. Eng. Mech., 47(6), 819-838. http://dx.doi.org/10.12989/sem.2013.47.6.819.
  19. Bulut, N., Anil, O. and Belgin, C.M. (2011), "Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear", Comput. Concrete, 8(6), 717-733, http://dx.doi.org/10.12989/cac.2011.8.6.717.
  20. Cardoso, D.C.T. and Togashi, B.S. (2018), "Experimental investigation on the flexural-torsional buckling behavior of pultruded GFRP angle columns", Thin-Wall. Struct., 125, 269-280. https://doi.org/10.1016/j.tws.2018.01.031.
  21. Correia, J., Branco, F. and Ferreira, J. (2005). "Structural Behaviour of GFRP-Concrete hybrid beams", Composites in Construction-Third International Conference, Lyon, France.
  22. Duran, B., Tunaboyu, O., Kaplan, O. and Avsar, O.J. (2018), "Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames", Struct. Eng. Mech., 67(3), 233-244, http://dx.doi.org/10.12989/sem.2018.67.3.233.
  23. El-Shihy, A., Fawzy, H., Mustafa, S. and El-Zohairy, A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295. https://doi.org/10.12989/scs.2010.10.3.281
  24. Fam, A., Schnerch, D. and Rizkalla, S. (2005), "Rectangular Filament-Wound Glass Fiber Reinforced Polymer Tubes Filled with Concrete under Flexural and Axial Loading: Experimental Investigation", J. Compos. Construct., 9(1), 25-33. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(25)
  25. Fayed, S., Badr el-din, A., Basha, A. and Mansour, W. (2022). "Shear behavior of RC pile cap beams strengthened using ultrahigh performance concrete reinforced with steel mesh fabric", Case Studies Construct. Mater., e01532.
  26. Ferreira, A.J.M., Ribeiro, M.C.S. and Marques, A.T. (2004), "Analysis of hybrid beams composed of GFRP profiles and polymer concrete", Int. J. Mech. Mater. Des., 1(2), 143-155. https://doi.org/10.1007/s10999-004-1493-0
  27. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  28. Gemi, L., Madenci, E., Ozkilic, Y. O., Yazman, S. and Safonov, A. (2022), "Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams", Polymers, 14(18), 3740. https://doi.org/10.3390/polym14183740
  29. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct.,
  30. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790
  31. Hadi, M.N., Almalome, M.H., Yu, T. and Rickards, W.A. (2020), "Flexural behavior of beams reinforced with either steel bars, molded or pultruded GFRP grating", Steel Compos. Struct., 34(1), 17-34.
  32. Hanus, J.P., Bank, L.C. and Oliva, M.G. (2009), "Combined loading of a bridge deck reinforced with a structural FRP stayin-place form", Construct. Build. Mater., 23(4), 1605-1619. https://doi.org/10.1016/j.conbuildmat.2007.11.008
  33. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499.
  34. Kammona, H.H.H., Attiya, M.A. and Shakir, Q.M. (2020). "Numerical Tracking of the Behavior of Repaired Reinforced Concrete Beams by CFRP Sheets against Shear", Materials Science Forum.
  35. Kantar, E. and Anil, O.J. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230, http://dx.doi.org/10.12989/scs.2012.12.3.207.
  36. Khan, U., Al-Osta, M.A. and Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142, http://dx.doi.org/10.12989/sem.2017.61.1.125.
  37. Kim, D.H. (1994), Composite Structures for Civil and Architectural Engineering, CRC Press
  38. Kim, N., Kim, Y.H. and Kim, H.S. (2015), "Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs", Struct. Eng. Mech., 53(6), 1067-1081, http://dx.doi.org/10.12989/sem.2015.53.6.1067.
  39. Kim, Y.J. and Fam, A. (2011), "Numerical analysis of pultruded GFRP box girders supporting adhesively-bonded concrete deck in flexure", Eng. Struct., 33(12), 3527-3536. https://doi.org/10.1016/j.engstruct.2011.07.016.
  40. Laudiero, F., Minghini, F. and Tullini, N. (2013), "Postbuckling failure analysis of pultruded FRP beams under uniform bending", Compos. Part B: Eng., 54, 431-438. https://doi.org/10.1016/j.compositesb.2013.06.009.
  41. Li, T., Feng, P. and Ye, L. (2006), "Experimental study on FRPconcrete hybrid beams", Third international conference on FRP composites in civil engineering. Miami, Florida: International Institute for FRP in Construction.
  42. Lokuge, W., Abousnina, R. and Herath, N. (2019), "Behaviour of geopolymer concrete-filled pultruded GFRP short columns", J. Compos. Mater., 53(18), 2555-2567. https://doi.org/10.1177/0021998319833447
  43. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280.
  44. Madenci, E., Ozkilic, Y. O., Aksoylu, C. and Safonov, A. (2022), "The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets", Polymers, 14,
  45. Minchenkov, K., Vedernikov, A., Safonov, A. and Akhatov, I. (2021), "Thermoplastic Pultrusion: A review". Polymers, 13, 180. https://doi.org/10.3390/polym13020180
  46. Muttasar, M., Manalo, A. and Lokuge, W. (2014), "Flexural and axial behaviour of pultruded GFRP tubes filled with low strength concrete", Proceedings of Australasian Composites Conference on Materials for a Lighter and Smarter World.
  47. Nunes, F., Correia, J.R. and Silvestre, N. (2016), "Structural behaviour of hybrid FRP pultruded columns. Part 1: Experimental study", Compos. Struct., 139, 291-303. https://doi.org/10.1016/j.compstruct.2015.12.058
  48. Ozbakkaloglu, T. and Saatcioglu, M. (2006), "Seismic behavior of high-strength concrete columns confined by fiber-reinforced polymer tubes", J. Compos. Construct., 10(6), 538-549. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(538)
  49. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021b), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Construct. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  50. Ozkilic, Y.O., Aksoylu, C., Gemi, L. and Arslan, M.H. (2022), "Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study", Structures, 41, 1369-1389. https://doi.org/10.1016/j.istruc.2022.05.061
  51. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021), "Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour", Struct. Eng. Mech., 79(3), 309-326.
  52. Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013
  53. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct. 28(4), 483-494.
  54. Panda, K., Bhattacharyya, S. and Barai, S. (2012), "Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet", Steel Compos. Struct., 12(2), 149-166. https://doi.org/10.12989/scs.2012.12.2.149
  55. Qasrawi, Y., Heffernan, P.J. and Fam, A. (2015), "Dynamic behaviour of concrete filled FRP tubes subjected to impact loading", Eng. Struct., 100, 212-225. https://doi.org/10.1016/j.engstruct.2015.06.012
  56. Qureshi, H.J., Saleem, M.U., Khurram, N., Ahmad, J., Amin, M. N., Khan, K. and Arifuzzaman, M. (2022), "Investigation of CFRP reinforcement ratio on the flexural capacity and failure mode of plain concrete prisms", Materials, 15(20), 7248. https://doi.org/10.3390/ma15207248
  57. Ribeiro, M., Tavares, C., Ferreira, A.J. and Marques, A.T. (2002). "Static flexural performance of GFRP-polymer concrete hybrid beams", Key Eng. Mater.,
  58. Sajedi, F. and Shariati, M. (2019), "Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping", Steel Compos. Struct. 30(5), 417-432.
  59. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP",Struct. Eng. Mech., 58(5), 825-845, http://dx.doi.org/10.12989/sem.2016.58.5.825.
  60. Shariati, M., Grayeli, M., Shariati, A. and Naghipour, M. (2020), "Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading", Steel Compos. Struct., 36(5), 587-602.
  61. Shawkat, W., Fahmy, W. and Fam, A. (2008), "Cracking patterns and strength of CFT beams under different moment gradients", Compos. Struct., 84(2), 159-166. https://doi.org/10.1016/j.compstruct.2007.07.005
  62. Starr TF. Pultrusion for Engineers (2000), http://doi.org/10.1533/9781855738881.97.
  63. Tong, Z., Song, X. and Huang, Q. (2018), "Deflection calculation method on GFRP-concrete-steel composite beam", Steel Compos. Struct., 26(5), 595-606. http://dx.doi.org/10.12989/scs.2018.26.5.595.
  64. Tucci, F. and Vedernikov, A. (2021), "Design Criteria for Pultruded Structural Elements", Encycl. Mater. Compos, 51-68.
  65. Tunaboyu, O. and Avsar, O. (2017), "Seismic repair of captivecolumn damage with CFRPs in substandard RC frames", Struct. Eng. Mech., 61(1), 1-13, http://dx.doi.org/10.12989/sem.2017.61.1.001.
  66. Uslu, E., Gavgali, M., Erdal, M.O., Yazman, S. and Gemi, L. (2021), "Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study", Materials Today Communications, 26, 101939. https://doi.org/10.1016/j.mtcomm.2020.101939
  67. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2020), "Pultruded materials and structures: A review", J. Compos. Mater., 54(26), 4081-4117. https://doi.org/10.1177/0021998320922894
  68. Vedernikov, A., Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S., Gusev, S. and Safonov, A. (2022), "Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates", Compos. Struct., 301, 116216. https://doi.org/10.1016/j.compstruct.2022.116216
  69. Vedernikov, A., Tucci, F., Carlone, P., Gusev, S., Konev, S., Firsov, D. and Safonov, A. (2021), "Effects of pulling speed on structural performance of L-shaped pultruded profiles", Compos. Struct., 255, 112967. https://doi.org/10.1016/j.compstruct.2020.112967
  70. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441.
  71. Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of steel fiberreinforced high-strength concrete-filled FRP tube columns under axial compression", Eng. Struct., 90, 158-171. https://doi.org/10.1016/j.engstruct.2015.02.020
  72. Yurdakul, O. and Avsar, O. (2015), "Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs", Struct. Eng. Mech., 54(3), 521-543, http://dx.doi.org/10.12989/sem.2015.54.3.521.
  73. Zhan, Y., Wu, G. and Harries, K.A. (2018), "Determination of critical load for global flexural buckling in concentrically loaded pultruded FRP structural struts", Eng. Struct., 158, 1-12. https://doi.org/10.1016/j.engstruct.2017.12.008
  74. Zhang, D., Wang, Q. and Dong, J. (2016), "Simulation study on CFRP strengthened reinforced concrete beam under four-point bending", Comput. Concrete, 17(3), 407-421, http://dx.doi.org/10.12989/cac.2016.17.3.407.
  75. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143, http://dx.doi.org/10.12989/sem.2017.64.1.135.
  76. Zou, X., Lin, H., Feng, P., Bao, Y. and Wang, J. (2020), "A review on FRP-concrete hybrid sections for bridge applications", Compos. Struct., 113336.