• 제목/요약/키워드: Shear interaction

검색결과 707건 처리시간 1.437초

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • 제16권9호
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Effect of Kinematic Motion on Changes in Coefficients of Friction of Porcine Knee Joint Cartilage (기구학적 운동이 돼지 무릎 관절연골의 마찰계수 변화에 미치는 영향)

  • Kim, Hwan;Kim, ChoongYeon;Lee, KwonYong;Kim, DaeJoon;Kim, DoHyung
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.46-50
    • /
    • 2013
  • In this study, the frictional behaviors of articular cartilage against a Co-Cr alloy in two types of kinematic motions were compared. Cartilage pins were punched from the femoral condyles of porcine knee joints, and Co-Cr alloy disks were machined from orthopedic-grade rods and polished to a surface roughness ($R_a$) of 0.002. Friction tests were conducted by using a pin-on-disk-type tribotester in phosphate buffered saline (PBS) under pressures of 0.5, 1, and 2 MPa. All tests were performed in the repeat pass rotational (ROT) and the linear reciprocal (RCP) sliding motions with the same sliding distance and speed of 50 mm/s. The coefficients of friction of the cartilage against the Co-Cr alloy increased with the sliding time in both kinematic motions for all contact pressures. The maximum coefficients of friction in RCP motion were 1.08, 2.82, and 1.96 times those in ROT motion for contact pressures of 0.5, 1, and 2 MPa, respectively. As the contact pressure increased, the coefficients of friction gradually increased in RCP motion, whereas they decrease and then increased in ROT motion. The interaction between the directional change of the shear stress and the orientation of collagen fiber in the superficial layer of the cartilage could affect the change in the frictional behaviors of the cartilage. A large difference in the coefficients of friction between the two kinematic motions could be interpreted as differences in the directional change of shear stress at the contact surface.

Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis (수치해석에 의한 복개터널 라이닝의 변위거동)

  • Lee, Myung-Woog;Park, Byung-Soo;Jeon, Yong-Bae;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • 제24권A호
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

Reliability-Based Safety and Capacity Evaluation of High-Speed Railroad Bridges (신뢰성에 기초한 고속철도 교량의 안전도 및 내하력평가)

  • 조효남;곽계환
    • Computational Structural Engineering
    • /
    • 제10권3호
    • /
    • pp.133-143
    • /
    • 1997
  • In Korea, the construction of the first high-speed railroad on the Seoul-Pusan Corridor has already started 3 years ago, in the paper, an attempt is made to develop reliability-based safety and capacity evaluation models for the computer-aided maintenance of the high-speed railroad bridges. The strength limit state models of PC railroad bridges for reliability analysis encompass both the single failure mode such as bending or shear strength and the combined interaction equations which simultaneously take into account flexures, shear and torsion. Then, the actual load carrying capacity and the realistic safety of bridges are evaluated using the system reliability-based equivalent strength, and the results are compared with those of the element reliability based or conventional methods. It is concluded that the proposed models may be appropriately applied in practice for the realistic assessment of safety and capacity of high-speed railroad bridges.

  • PDF

Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics

  • Mosharraf, Ramin;Rismanchian, Mansour;Savabi, Omid;Ashtiani, Alireza Hashemi
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권4호
    • /
    • pp.221-228
    • /
    • 2011
  • PURPOSE. Veneering porcelain might be delaminated from underlying zirconia-based ceramics. The aim of this study was the evaluation of the effect of different surface treatments and type of zirconia (white or colored) on shear bond strength (SBS) of zirconia core and its veneering porcelain. MATERIALS AND METHODS. Eighty zirconia disks (40 white and 40 colored; 10 mm in diameter and 4 mm thick) were treated with three different mechanical surface conditioning methods (Sandblasting with $110{\mu}m$ $Al_2O_3$ particle, grinding, sandblasting and liner application). One group had received no treatment. These disks were veneered with 3 mm thick and 5 mm diameter Cercon Ceram Kiss porcelain and SBS test was conducted (cross-head speed = 1 mm/min). Two and one way ANOVA, Tukey's HSD Past hoc, and T- test were selected to analyzed the data (${\alpha}=0.05$). RESULTS. In this study, the factor of different types of zirconia ceramics (P=.462) had no significant effect on SBS, but the factors of different surface modification techniques (P=.005) and interaction effect (P=.018) had a significant effect on SBS. Within colored zirconia group, there were no significant differences in mean SBS among the four surface treatment subgroups (P=0.183). Within white zirconia group, "Ground group" exhibited a significantly lower SBS value than "as milled" or control (P=0.001) and liner (P=.05) groups. CONCLUSION. Type of zirconia did not have any effect on bond strength between zirconia core and veneer ceramic. Surface treatment had different effects on the SBS of the different zirconia types and grinding dramatically decreased the SBS of white zirconia- porcelain.

Shaft Group Efficiency of Friction Pile Groups in Deep Soft Clay (대심도 마찰무리말뚝의 주면 무리효율 분석)

  • Paek, Jin-Yeol;Cho, Jae-Yeon;Jeong, Sang-Seom;Hwang, Taik-Jean
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제32권2C호
    • /
    • pp.49-60
    • /
    • 2012
  • In this study, the behaviors of friction pile groups are investigated using 3D finite element (FE) analysis. The emphasis was quantifying on the shear load transfer (f-w) characteristics of pile groups and the shaft group effects. A framework for determining the f-w curve is proposed based on both theoretical analysis and field load test database. Through comparisons with case histories and FE results, it is shown that the proposed f-w curve is capable of predicting the behavior of a friction pile in deep soft clay. Additionally, a numerical analysis that takes into account the group efficiency factors were performed for major parameter on group pile-soil interaction, such as the pile spacing, pile arrangement, soil condition, and location of pile cap. Based on these results, the shaft group efficiency factors were also proposed.

A Study on the Evaluation of Soil Nonlinear Characteristics by Seismic Recorded Data at Downhole Array (Downhole 지진계측자료에 의한 지반의 비선형성 평가에 관한 연구)

  • 장정범;서용표;이종림;이계희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제5권6호
    • /
    • pp.29-35
    • /
    • 2001
  • The soil-structure interaction(SSI) analysis is essential to soil site where shear wave velocity is less than 1,050 m/sec and soil nonlinear characteristics for this kind of soil site have to be considered in SSI analysis. In order to consider soil nonlinear characteristics in the SSI analysis, simple and reliable soil nonlinear evaluation technique with seismic recorded data at downhole array is proposed in this study. The SSI analysis is carried out in order to prove the reliability of the proposed evaluation technique with Hualien large scale seismic test(HLSST) site in Taiwan. The analytical result are compared with Hualien earthquake recorded data and the analytical results with SHAKE program which is prevailed at present. As a result, the proposed evaluation technique shows a good agreement with both the Hualien earthquake recorded data and the analytical result with SHAKE program and the reliability and usefulness are confirmed.

  • PDF

Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study

  • Azeem, M. Mustafa;Wang, Qingyu;Li, Zhongyu;Zhang, Yue
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.337-343
    • /
    • 2020
  • Oxide dispersed strengthened (ODS) steel is an important candidate for Gen-IV reactors. Oxide embedded in Fe can help to trap irradiation defects and enhances the strength of steel. It was observed in this study that the size of oxide has a profound impact on the depinning mechanism. For smaller sizes, the oxide acts as a void; thus, letting the dislocation bypass without any shear. On the other hand, oxides larger than 2 nm generate new dislocation segments around themselves. The depinning is similar to that of Orowan mechanism and the strengthening effect is likely to be greater for larger oxides. It was found that higher shear deformation rates produce more fine-tuned stress-strain curve. Both molecular dynamics (MD) simulations and BKS (Bacon-Knocks-Scattergood) model display similar characteristics whereby establishing an inverse relation between the depinning stress and the obstacle distance. It was found that (110)oxide || (111)Fe (oriented oxide) also had similar characteristics as that of (100)oxide || (111)Fe but resulted in an increased depinning stress thereby providing greater resistance to dislocation bypass. Our simulation results concluded that critical depinning stress depends significantly on the size and orientation of the oxide.

Quality of Duck Breast and Leg Meat after Chilling Carcasses in Water at 0, 10 or $20^{\circ}C$

  • Ali, Md. Shawkat;Yang, Han-Sul;Jeong, Jin-Yeon;Moon, Sang-Hun;Hwang, Young-Hwa;Hwang, Young-Hwa;Park, Gu-Boo;Joo, Seon-Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권12호
    • /
    • pp.1895-1900
    • /
    • 2007
  • An experiment was carried out to investigate the effects of different chilling temperature on duck breast and leg meat quality. Duck carcasses were chilled for 30 minutes in water at either $0^{\circ}C$, $10^{\circ}C$ or $20^{\circ}C$ within 20 minutes of post mortem with 6 carcasses per group. Results showed no significant effects of chilling temperature on ultimate pH, protein solubility, sarcomere length and shear force value for duck breast or leg meat (p>0.05). Leg meat had higher ultimate pH, redness and shear force value, lower cooking loss, lightness, yellowness and protein solubility values than breast meat. The interaction of meat type and chilling temperature on cooking loss was significant (p<0.05). The effect of chilling temperature on cooking loss was more severe in leg meat than breast meat and $20^{\circ}C$ chilling resulted in significantly higher cooking losses than the other chilling temperatures. Results of this experiment revealed that duck carcass can be chilled at $10^{\circ}C$ without any harmful effect on meat quality including toughness of meat.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.