• Title/Summary/Keyword: Shear interaction

Search Result 706, Processing Time 0.024 seconds

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

Modeling Techniques of the Complex Shear Wall Structure on a Common Foundation (공동기초상 복합 전단벽 구조물의 모델링 기법)

  • 김종수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.241-248
    • /
    • 1997
  • The super-structure in a soil-structure interaction analysis is commonly idealized as lumped parameter system. In this study, the complex shear wall structure is modeled using three different kinds of modeling techniques : 1) full FEM comparatively as an exact solution, 2)equivalent shear spring model assuming mainly shear deformations of the wall, 3) equivalent beam-stick model made by independent static analysis. Dynamic characteristics due to three different modeling methods are compared and investigated before performing structural response analysis. The beam-stick model in comparison to shear spring model gives closer dynamic responses when compared with the full FEM, even though it requires additional unit load static analyses.

  • PDF

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Seismic Behavior of Steel Coupling Beam-Wall Connection with Pane Shear Failure (패널파괴형 철골 커플링 보-벽체 접합부의 내진거동)

  • Park Wan-Shin;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yang Il-Seung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • In the past decade, various experimental programmes were undertaken to address the lack of information on the interaction between steel coupling beams and reinforced concrete shear wall in a hybrid coupled shear wall system. In this paper, the seismic performance of steel coupling beam-wall connections in a hybrid coupled shear wall system is examined through results of an experimental research programme where three 2/3-scale specimens were tested under cyclic loading. The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. Panel shear strength reflects enhancement achieved through mobilization of the reinforced concrete panel using face bearing plates and/or horizontal ties in the panel region of steel coupling beam-wall connections.

  • PDF

Flexural and shear behaviour of profiled double skin composite elements

  • Anwar Hossain, K.M.;Wright, H.D.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2004
  • Double skin composite element (DSCE) is a novel form of construction comprising two skins of profiled steel sheeting with an infill of concrete. DSCEs are thought to be applicable as shear or core walls in a building where they can resist in-plane loads. In this paper, the behaviour of DSCE subjected to combined bending and shear deformation is described. Small-scale model tests on DSCEs manufactured from micro-concrete and very thin sheeting were conducted to investigate the flexural and shear behaviour along with analytical analysis. The model tests provided information on the strength, stiffness, strain conditions and failure modes of DSCEs. Detailed development of analytical models for strength and stiffness and their performance validation by model tests are presented.

An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams

  • Sun, Kai Q.;Zhang, Nan;Liu, Xiao;Tao, Yan X.
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2021
  • An equivalent single-layer theory (EST) is put forward for analyzing free vibrations of steel-concrete composite beams (SCCB) based on a higher-order beam theory. In the EST, the effect of partial interaction between sub-beams and the transverse shear deformation are taken into account. After using the interlaminar shear force continuity condition and the shear stress free conditions at the top and bottom surface, the displacement function of the EST does not contain the first derivatives of transverse displacement. Therefore, the C0 interpolation functions are just demanded during its finite element implementation. Finally, the EST is validated by comparing the results of two simply-supported steel-concrete composite beams which are tested in laboratory and calculated by ANSYS software. Then, the influencing factors for free vibrations of SCCB are analyzed, such as, different boundary conditions, depth to span ratio, high-order shear terms, and interfacial shear connector stiffness.

Shear Lag in Framed Tube Structures with Multiple Internal Tubes (복수의 내부 튜브를 가진 골조 튜브 구조물의 Shear Lag)

  • 이강건;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • A simple numerical modelling technique is proposed for estimating the shear lag effects of framed-tube system with multiple internal tubes. The tube(s)-in-tube structure is analysed by using an analogy approach in which each tube is individually modelled by a beam that can accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear lag phenomenon of such structures is studied with additional bending stresses. Structural parameters governing the shear lag behaviour in tube(s)-in-tube structures are also investigated through thirty-three numerical examples.

  • PDF

Harmonic Excitation of Shear Building with Force-Controlled Shaking Table (힘-제어 진동대를 이용한 전단건물의 조화진동)

  • Lee, Sang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.853-859
    • /
    • 2015
  • 1-DOF shear building was designed, built and tested to investigate the interactions between the shear building and the shaking table excited harmonically by the electro-magnetic forces. In the experiments horizontal accelerations of the shaking table and the shear building were measured. To understand the experimental results experimental setting was modeled as an unconstrained 2-DOF system under the hormonic forces. The responses of the shear building and the shaking table of the unconstrained 2-DOF system were found with the equations of motions. The magnification factors of the table and the shear building with respect to the amplitude of the harmonic forces and the transmission of the shear building with respect to the table excitations were found and compared with the experimental results.

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

Push out tests on various shear connectors used for cold-formed steel composite beam

  • Rajendran, Senthilkumar;Perumalsamya, Jayabalan;Mohanraj, Divya
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.315-323
    • /
    • 2022
  • Shear connectors are key elements that ensure integrity in a composite system. The primary purpose of a shear connector is to bring a high degree of interaction between composite elements. A wide variety of connectors are available for hot-rolled composite construction, connected to the beam through welding. However, with cold-formed members being very thin, welding of shear connectors is not desirable in cold-formed composite constructions. Shear connectors for cold-formed elements are limited in studies as well as in the market. Hence in this study, three different types of shear connectors, namely, single-channel, double channel, and self-tapping screw, were considered, and their performance assessed by the Push-out test as per Eurocode 4. The connection between channel shear connectors and the beam was made using self-tapping screws to avoid welding. The performance of the connectors was analyzed based on their ultimate capacity, characteristic capacity, ductility, and slippage during loading. Strength to weight ratio was also carried out to understand the proposed connectors' suitability for conventional ones. The results showed relatively higher initial stiffness and ductility for double channel connectors than other connectors. Also, self-tapping screws had a higher strength to weight ratio with low ductility.