• Title/Summary/Keyword: Shear buckling behavior

Search Result 223, Processing Time 0.025 seconds

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.

Optimized stiffener detailing for shear links in eccentrically braced frames

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.35-50
    • /
    • 2021
  • Eccentrically braced frames (EBFs) are utilized as a lateral resisting system in high seismic zones. Links are the primary source of energy dissipation and they are exposed to high deformation, which may lead to buckling. Web stiffeners were introduced to prevent buckling of shear link. AISC 341 provides the required vertical stiffeners for a shear link. In this study, different stiffener configurations were examined. The main objective is to improve the behavior of short links using different stiffener configurations. Pursuant to this goal, a comprehensive numerical study is conducted using ABAQUS. Shear links with different stiffener configurations were subjected to cyclic loading using loading protocol mandated by AISC 341. The results are compared in terms of energy dissipation and shear capacities and rupture index. The proposed stiffener configurations were further verified with different link length ratios, I-shapes and thickness of stiffener. Based on the results, the stiffener configuration with two vertical and two diagonal stiffeners perpendicular to each other is recommended. The proposed stiffener configuration can increase the shear capacity, energy dissipation capacity and the ratio of energy/weight up to 27%, 38% and 30%, respectively. Detailing of the proposed stiffener configuration is presented.

Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory

  • Abdelhak, Z.;Hadji, L.;Khelifa, Z.;Hassaine Daouadji, T.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.291-305
    • /
    • 2016
  • In this paper, a refined shear deformation plate theory which eliminates the use of a shear correction factor was presented for FG sandwich plates composed of FG face sheets and an isotropic homogeneous core. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present refined shear deformation plate theory, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern buckling behavior of FG sandwiches plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, Boundary condition, and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.93-112
    • /
    • 2018
  • An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.