• 제목/요약/키워드: Shear buckling behavior

검색결과 223건 처리시간 0.024초

An innovative BRB with viscoelastic layers: performance evaluation and numerical simulation

  • Zhou, Ying;Gong, Shunming;Hu, Qing;Wu, Rili
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.205-229
    • /
    • 2018
  • Energy induced by minor earthquake and micro vibration cannot be dissipated by traditional buckling-restrained braces (BRBs). To solve this problem, a new type of hybrid passive control device, named as VE-BRB, which is configured by a BRB with high-damping viscoelastic (VE) layers, is developed and studied. Theoretical analysis, performance tests, numerical simulation and case analysis are conducted to study the seismic behavior of VE-BRBs. The results indicate that the combination of hysteretic and damping devices lead to a multi-phased nature and good performance. VE-BRB's working state can be divided into three phases: before yielding of the steel core, VE layers provide sufficient damping ratio to mitigate minor vibrations; after yielding of the steel core, the steel's hysteretic deformations provide supplemental dissipative capacity for structures; after rupture of the steel core, VE layers are still able to work normally and provide multiple security assurance for structures. The simulation results agreed well with the experimental results, validating the finite element analysis method, constitutive models and the identified parameters. The comparison of the time history analysis on a 6-story frame with VE-BRBs and BRBs verified the advantages of VE-BRB for seismic protection of structures compared with traditional BRB. In general, VE-BRB had the potential to provide better control effect on structural displacement and shear in all stages than BRB as expected.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Analysis-oriented model for seismic assessment of RC jacket retrofitted columns

  • Shayanfar, Javad;Omidalizadeh, Meysam;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.371-390
    • /
    • 2020
  • One of the most common strategies for retrofitting as-built reinforced concrete (RC) columns is to enlarge the existing section through the application of a new concrete layer reinforced by both steel transverse and longitudinal reinforcements. The present study was dedicated to developing a comprehensive model to predict the seismic behavior of as-built RC jacketed columns. For this purpose, a new sectional model was developed to perform moment-curvature analysis coupled by the plastic hinge method. In this analysis-oriented model, new methodologies were suggested to address the impacts of axial, flexural and shear mechanisms, variable confining pressure, eccentric loading, longitudinal bar buckling, and varying axial load. To consider the effective interaction between core and jacket, the monolithic factor approach was adopted to extent the response of the monolithic columns to that of a respective RC jacket strengthened column. Next, parametric studies were implemented to examine the effectiveness of the main parameters of the RC jacket strategy in retrofitting as-built RC columns. Ultimately, the reliability of the developed analytical model was validated against a series of experimental results of as-built and retrofitted RC columns.

선체판부재의 최종강도에 대한 횡압력의 영향에 관한 연구 (A Study on the Lateral Pressure Effect for Ultimate Strength of Ship Platings)

  • 박주신;고재용;이준교;이경환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.583-591
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to bitter understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

강판과 가새로 보강된 무량판 구조물의 내진 성능평가 (Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces)

  • 신우승;김진구
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.451-458
    • /
    • 2008
  • 본 논문에서는 중 약진 지역에서 중력 저항시스템인 중간 모멘트골조로 설계된 3층, 6층 RE 플랫플레이트 구조물을 KBC 2005를 만족하도록 RC구조물에 강판과 가새/ BRB 등의 보강방법을 적용하여 보강하고, 내진성능을 평가하여 보강 효과를 검증하였다. 비탄성 정적해석과 동적해석 결과에 따르면 내진 보강된 구조물은 강도와 강성이 크게 향상된 것으로 나타났다 특히 기둥을 철판으로 보강한 경우 슬래브를 철판으로 보강하여 조기 뚫림 전단파괴를 방지함으로써 강도를 크게 향상할 수 있다. BRB로 보강된 구조물은 Brace로 보강된 구조물보다 다소 연성적 거동을 보였으며, 그 효과는 3층 모델에서 현저하게 나타났다.

헤디드 바와 강섬유로 보강된 Dapped End Beam의 구조 거동에 관한 실험적 연구 (Behavior of Reinforced Dapped End Beams with T-headed Bar and Steel Fibers)

  • 최진혁;이창훈;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.49-52
    • /
    • 2004
  • In this studies, Dapped End Beams(DEB) having disturbed regions were designed by using strut tie model, and the main purpose of this paper is that whether T-headed bars and Steel fibers will be present or not. The ability of DEB with T-headed bars have a superior performance rather than others, such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, fatigue strength and crack. Each DEB with both headed bars and steel fibers, headed bars, and steel fibers as a substitute reinforced steel in the disturbed regions and a DEB with only stirrup and tie reinforced steel were comparable. In contrast, the headed bar stirrups, the tie headed bars and the reinforced steel fibers did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by increasing the tension stiffening effect to account for high load effects.

  • PDF

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli;Ahmad Maleki;Ramin K. Badri
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.239-252
    • /
    • 2024
  • Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구 (A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings)

  • 박주신;고재용;이준교
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.515-522
    • /
    • 2005
  • 선체를 구성하는 판부재는 일반적으로 면내하중과 횡하중의 조합하중이 작용하게 된다. 면내하중으로서는 주로 전체적인 선체거더의 휨과 비틀림에 의한 압축하중 및 전단하중이 있다. 횡하중은 수압과 화물압력에 의해서 작용하게 된다. 이러한 하중의 요소들은 항상 동시에 작용하는 것이 아니지만 한 개 이상의 하중이 존재하고 상호작용하게 된다. 그러므로, 좀더 합리적이고 안정적인 선박구조의 설계를 위해서는 이러한 조합하중이 선체판에 작응할 경우에 발생하게 되는 좌굴 및 최종강도거동의 상호관계를 좀더 자세히 분석할 필요가 있다. 실제로 선체판은 슬래밍과 팬팅과 같은 충격하중을 제외하고는 상대적으로 적은 수압이 작용하게 된다. 본 연구논문에서는 조합하중을 받는 선체판부재의 거동에 있어서 최종한계상태설계법에 기반을 둔 탄소성대변형 유한요소해석을 수행하였다. 본 연구에서는 압축하중과 횡하중이 판부재에 작용하였을 경우 횡하중의 크기에 따른 영향을 탄소성대변형 유한요소해석(ANSYS)을 수행하여 분석하였다.

변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰 (Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation)

  • 이창호;변용훈;이종섭
    • 한국지반공학회논문집
    • /
    • 제27권3호
    • /
    • pp.85-94
    • /
    • 2011
  • 다양한 모래부피비($sf=V_{sand}/V_{total}$)를 가지는 시료를 조성하여 변형률 크기에 따른 모래-고무 혼합재($D_{sand}/D_{rubber}=1$)의 거동을 분석하였다. 공진주시험, 압밀시험, 그리고 직접전단시험을 실시하였다. 변형률 크기에 따라 모래와 고무는 혼합재 전체 거동을 서로 다르게 제어한다. $sf{\geq}0.4$의 혼합재는 비선형 전단강성의 감소가 관찰되는 반면, $sf{\leq}0.2$의 낮은 모래부피비를 가지는 혼합재는 상당히 높은 탄성한계변형률을 보인다. 고무 입자가 force chain의 역할을 수행할 때 수직변형은 급격한 증가를 보인다. 혼합재 내의 고무부피비가 감소함에 따라 혼합재의 강도는 증가하는 경향을 보이며 $sf{\leq}0.8$의 혼합재는 전단변형에 따라 부피 수축 거동을 보인다. 고무 입자는 변형률 크기에 따라 혼합재 내에서 서로 다른 역할을 수행한다: 미소변형률 영역에서는 혼합재 내의 접촉수 증가 및 소성의 제어; 중간변형률 영역에서는 force chain의 좌굴 방지; 그리고 대변형률 영역에서는 혼합재의 부피수축 거동을 이끈다.