• Title/Summary/Keyword: Shear buckling behavior

Search Result 223, Processing Time 0.027 seconds

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections (이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석)

  • Hwoang, Jin-Woo;Back, Sung Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.614-621
    • /
    • 2019
  • A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.

Analysis Torsional Behavior of I-Girder with Corrugated Webs (파형 웹-플레이트 거더의 비틀림 거동 연구)

  • Kim, Jong-Min;Kim, Sung-Nam;Jeon, Jin-Su;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.585-588
    • /
    • 2008
  • Resistance to lateral torsional buckling of steel I-girder (open section) is a very important design requirement. But, most studies of steel I-girder with corrugated webs were invested in shear behavior. Until now, most studies about Lateral torsional buckling of I-girder with corrugated webs have been based on Lindner.J's study. the study includes that the pure torsional constant of I-girder with corrugated webs doesn't different from that of I-girder with flat webs. This paper pesents pure torsional constant I-girder with sinusoidally corrugated webs by using finite element analysis.

  • PDF

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Analysis of Pure Torsional Constant of I-Girder with Corrugated Webs (파형 복부판을 가진 플레이트거더의 순수비틀림상수 분석)

  • Jeon, Jin-Su;Kim, Sung-Nam;Yoo, Chai-Hong;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.287-290
    • /
    • 2008
  • Resistance to lateral torsional buckling of steel I-girder (open section) is a very important design requirement. But, most studies of steel I-girder with corrugated webs were invested in shear behavior. Untill now, most studies about Lateral torsional buckling of I-girder with corrugated webs have been based on Lindner.J's study (Lateral torsional buckling of beamswith trapezoidally corrugated webs,1990). the study includes that the pure torsional constant of I-girder with corrugated webs $J_{cor}$ doesn't different from that of I-girder with flat webs. This paper pesents pure torsional constant of I-girder with corrugated webs by using finite element anaysis.

  • PDF

A Study on Shear and Flexural Performance Evaluation of Circularly Corrugated Plate (원형 파형강판의 전단 및 휨 성능평가에 관한 연구 -전단 및 휨강도 설계식 제안-)

  • Moon, Seong Hwan;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.455-470
    • /
    • 2015
  • This research suggest method to calculate more accurate shearing and bending force on corrugated steel plate that it is produced domestically. This research analyze limitation of former formula on domestic design standard and existing research. In addition The strength calculation formula on corrugated steel plate was proposed according to result of the experiment and FEM analysis. In this study, the result that compare experiment with analysis using the proposed shear buckling coefficient and limit width to thickness ratio indicate similar behavior. As the result of the research, It is judged that the structural member design and performance evaluation of the corrugated steel plate was conveniently applied.

Buckling behavior of rectangular plates under uniaxial and biaxial compression

  • Bourada, Mohamed;Bouadi, Abed;Bousahla, Abdelmoumen Anis;Senouci, Amel;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.113-123
    • /
    • 2019
  • In the classical stability investigation of rectangular plates the classical thin plate theory (CPT) is often employed, so omitting the transverse shear deformation effect. It seems quite clear that this procedure is not totally appropriate for the investigation of moderately thick plates, so that in the following the first shear deformation theory proposed by Meksi et al. (2015), that permits to consider the transverse shear deformation influences, is used for the stability investigation of simply supported isotropic rectangular plates subjected to uni-axial and bi-axial compression loading. The obtained results are compared with those of CPT and, for rectangular plates under uniaxial compression, a novel direct formula, similar to the conventional Bryan's expression, is found for the Euler stability stress. The accuracy of the present model is also ascertained by comparing it, with model proposed by Piscopo (2010).

Nonlinear buckling and free vibration of curved CNTs by doublet mechanics

  • Eltaher, Mohamed A.;Mohamed, Nazira;Mohamed, Salwa A.
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.213-226
    • /
    • 2020
  • In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.