• Title/Summary/Keyword: Shear bond strength (SBS)

Search Result 82, Processing Time 0.025 seconds

Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface

  • Seker, Emre;Kilicarslan, Mehmet Ali;Deniz, Sule Tugba;Mumcu, Emre;Ozkan, Pelin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the effects of atmospheric plasma (APL) versus conventional surface treatments on the adhesion of self-adhesive resin cement to Ti-6Al-4V alloy. MATERIALS AND METHODS. Sixty plates of machined titanium (Ti) discs were divided into five groups (n=12): 1) Untreated (CNT); 2) Sandblasted (SAB); 3) Tribochemically treated (ROC); 4) Tungsten CarbideBur (TCB); 5) APL treated (APL). SEM analysis and surface roughness (Ra) measurements were performed. Self-adhesive resin cement was bonded to the Ti surfaces and shear bond strength (SBS) tests, Ra and failure mode examinations were carried out. Data were analyzed by one-way analysis of variance and chi-squared test. RESULTS. The lowest SBS value was obtained with CNT and was significantly different from all other groups except for APL. The ROC showed the highest SBS and Ra values of all the groups. CONCLUSION. It was concluded that the effect of APL on SBS and Ra was not sufficient and it may not be a potential for promoting adhesion to titanium.

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Shear bond strength of ceramic brackets bonded with antimicrobial monomer-containing self-etching primer (항미생물제제를 포함한 self-etching primer로 접착한 세라믹 브라켓의 전단 결합 강도)

  • Kwon, Tae-Hun;Kang, Jang-Mi;Chang, Na-Young;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Objective: The purpose of this study was to determine (1) the shear bond strength (SBS) of an antimicrobial monomer-containing self-etching primer according to ceramic bracket types and (2) the bracket-adhesive failure mode using an adhesive remnant index (ARI). Methods: A total of 90 extracted human teeth were randomly divided into 6 groups. Each group consisted of one of two ceramic brackets (monocrystalline, polycrystalline) and one of three primers (Transbond XT primer, Transbond Plus SEP, Clearfil Protect Bond) with each group containing 15 specimens. The SBS was measured, and adhesive residues left on the tooth surface were assessed. Results: The SBS of polycrystalline ceramic bracket groups was Significantly higher than that of the monocrystalline ceramic bracket groups (p < 0.001). The SBS of Transbond XT primer groups was significantly higher than those of Transbond Plus SEP groups and Clearfil Protect Bond groups (p < 0.001). All the groups showed bonding failures between the bracket base and adhesive. Conclusions: The combination of a self-etching primer with a monocrystalline bracket is recommended for clinical use, considering its acceptable SBS and mode of failure.

EFFECT OF APPLICATION METHODS OF A SELF-ETCHING PRIMER ADHESIVE SYSTEM ON ENAMEL BOND STRENGTH (자가부식 프라이머 접착제의 적용방식이 법랑질의 결합강도에 미치는 영향)

  • Park, Jae-Gu;Cho, Kwon-Hwan;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.90-97
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of passive or active application of primer and coat times of bond on the shear bond strength when a self-etching primer adhesive (Clearfil SE Bond) was applied to enamel surface. Crowns of sixteen human molars were selected. Buccal and lingual enamels of crowns were partially exposed and slabs of 1.2 mm thick were made. They were divided into one of four equal groups (n = 8). Group 1: passive application of Primer and 1 coat of Bond, Group 2: active application of Primer and 1 coat of Bond, Group 3: passive application of Primer and 2 coats of Bond, Group 4: active application of Primer and 2 coats of Bond. Clearfil AP-X was bonded to enamel suface of each group using Tygon tubes. The bonded specimens were subjected to microshear bond strength (uSBS) testing with a crosshead speed of 1 mm/min. The results of this study were as follows; 1. The uSBS of Group 1 was the lowest among groups and the uSBS of Group 4 was the highest. 2. There was not statistically significant interaction between enamel uSBS by application method of Primer and coat time of Bond (p > 0.05). 3. There was not statistically significant difference between enamel uSBS by passive and active application of Primer (p > 0.05). 4. There was statistically significant difference between enamel uSBS by one- and two-coat of Bond (p < 0.05).

Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses

  • Kilinc, Halil Ibrahim;Kesim, Bulent;Gumus, Hasan Onder;Dincel, Mehmet;Erkaya, Selcuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • PURPOSE. This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. MATERIALS AND METHODS. Ninety-one square prism-shaped ($1{\times}1{\times}1.5mm$) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. RESULTS. The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P<.05). SBS values of none of the groups differed from those of the control group (P>.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (P<.05). CONCLUSION. Grinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength.

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

Effects of direct and indirect bonding techniques on bond strength and microleakage after thermocycling (직접 부착법과 간접 부착법이 열순환 후 부착강도와 미세누출에 미치는 영향에 대한 연구)

  • Ozturk, Firat;Babacan, Hasan;Nalcaci, Ruhi;Kustarci, Alper
    • The korean journal of orthodontics
    • /
    • v.39 no.6
    • /
    • pp.393-401
    • /
    • 2009
  • Objective: The purpose of this study was to compare the shear bond strength (SBS) of brackets and microleakage of a tooth-adhesive-bracket complex bonded with a direct and an indirect bonding technique after thermocycling. Methods: Fifty non-carious human premolars were divided into two equal groups. In the direct bonding group a light-cured adhesive and a primer (Transbond XT) was used. In the indirect-bonding group, a light-cured adhesive (Transbond XT) and chemical-cured primer (Sondhi Rapid Set) were used. After polymerization, the teeth were kept in distilled water for 24 hours and thereafter subjected to thermal cycling (500 cycles). For the microleakage evaluation, 10 teeth from each group were further sealed with nail varnish, stained with 0.5% basic fuchsin for 24 hours, and examined under a stereomicroscope. Fifteen teeth from each group were used for SBS testing with the universal testing machine and adhesive remnant index (ARI) evaluation. Data were analyzed using the Mann-Whitney U test, Chi-square test, and Fisher's exact test. Results: There were no statistical differences on SBS and microleakage between the two bonding techniques. The indirect bonding group had a significantly lower ARI score. Bracket failures were obtained between enamel-resin interfaces. Conclusions: The type of bonding technique did not significantly affect the amount of microleakage and SBS.

Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

  • Lee, Jung-Jin;Kang, Cheol-Kyun;Oh, Ju-Won;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE. This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS. Sixty specimens were cut in $15{\times}2.75mm$ discs using zirconia. After air blasting of $50{\mu}m$ alumina, samples were prepared by tribochemical silica coating with $Rocatec^{TM}$ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+$Calibra^{(R)}$, (2) Monobond S+$Multilink^{(R)}$ N and (3) ESPN sil+$RelyX^{TM}$ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS. In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION. In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.

Effects of different primers on indirect orthodontic bonding: Shear bond strength, color change, and enamel roughness

  • Tavares, Mirella Lemos Queiroz;Elias, Carlos Nelson;Nojima, Lincoln Issamu
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.245-252
    • /
    • 2018
  • Objective: We aimed to perform in-vitro evaluation to compare 1) shear bond strength (SBS), adhesive remnant index (ARI), and color change between self-etched and acid-etched primers; 2) the SBS, ARI and color change between direct and indirect bonding; and 3) the enamel roughness (ER) between 12-blade bur and aluminum oxide polisher debonding methods. Methods: Seventy bovine incisors were distributed in seven groups: control (no bonding), direct (DTBX), and 5 indirect bonding (ITBX, IZ350, ISONDHI, ISEP, and ITBXp). Transbond XT Primer was used in the DTBX, ITBX, and ITBXp groups, flow resin Z350 in the IZ350 group, Sondhi in the ISONDHI group, and SEP primer in the ISEP group. SBS, ARI, and ER were evaluated. The adhesive remnant was removed using a low-speed tungsten bur in all groups except the ITBXp, in which an aluminum oxide polisher was used. After coffee staining, color evaluations were performed using a spectrophotometer immediately after staining and prior to bonding. Results: ISONDHI and ISEP showed significantly lower SBS (p < 0.01). DTBX had a greater number of teeth with all the adhesive on the enamel (70%), compared with the indirect bonding groups (0-30%). The ER in the ITBX and ITBXp groups was found to be greater because of both clean-up techniques used. Conclusions: Direct and indirect bonding have similar results and all the primers used show satisfactory adhesion strength. Use of burs and polishers increases the ER, but polishers ensure greater integrity of the initial roughness. Resin tags do not change the color of the teeth.

Evaluation of Bond Strength in cp-Ti and Non-precious Metal-Ceramic System Using a Gold Bonding Agent (티타늄과 비귀금속 합금에 중간층으로 적용한 Au bonding agent의 금속-도재 결합에 대한 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was to evaluate the bond strength of using a Au bonding agent applied on cp-Ti and nonprecious metal-gold-ceramic system. Metallic frameworks(diameter: 5mm, height: 20mm)(N=56, n=7per group) cast in Ni-Cr alloy, Co-Cr alloy and cp-Ti were obtained using acrylic templates and airborne particle abraded with $110{\mu}m$ aluminum oxide. Au bonding agent was applied on wash opaque firing as intermediate layer. SEM and SEM/EDS line profile were performed on the cutting the cross-section of the metal substrate-porcelain with intermediate Au coating. Groups were tested using shear bond strength(SBS) testing at 0.5mm/min. The mean SBS values for the ceramic-Au layer-metal combination were significantly higher than those ceramic-metal combination. While ceramic-Au layer-cp-Ti combinations failed to increase bond strength instead of using a titanium bonding porcelain. The appication of using Au intermediate layer significantly improve the bond strength combination with metal-ceramic system.

  • PDF