• Title/Summary/Keyword: Shear Stress Distribution

Search Result 576, Processing Time 0.03 seconds

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models (Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF

A Study on the Mechanics of Shear Spinning of Cones

  • Kim Jae-Hun;Park Jun-Hong;Kim Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.806-818
    • /
    • 2006
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of working force are calculated by the newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$ becomes $\kappa$, yield limit in pure shear, in the deformation zone. The tangential forces are first calculated and the feed forces and the normal forces are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results.

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory

  • Chattibi, F.;Benrahou, Kouider Halim;Benachour, Abdelkader;Nedri, K.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.93-110
    • /
    • 2015
  • The thermomechanical bending response of anti-symmetric cross-ply composite plates is investigated by the use of the simple four variable sinusoidal plate theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. The validity of the present theory is demonstrated by comparison with solutions available in the literature. Numerical results are presented to demonstrate the behavior of the system. The influences of aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and stacking sequence on the thermally induced response are studied. The present study is relevant to aerospace, chemical process and nuclear engineering structures which may be subjected to intense thermal loads.

Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion

  • Wang, Qian;Qiu, Wenliang;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.953-964
    • /
    • 2015
  • A model has been proposed that can predict the ultimate torsional strength of single-box multi-cell reinforced concrete box girder under combined loading of bending, shear and torsion. Compared with the single-cell box girder, this model takes the influence of inner webs on the distribution of shear flow into account. According to the softening truss theory and thin walled tube theory, a failure criterion is presented and a ultimate torsional strength calculating procedure is established for single-box multi-cell reinforced concrete box girder under combined actions, which considers the effect of tensile stress among the concrete cracks, Mohr stress compatibility and the softened constitutive law of concrete. In this paper the computer program is also compiled to speed up the calculation. The model has been validated by comparing the predicted and experimental members loaded under torsion combined with different ratios of bending and shear. The theoretical torsional strength was in good agreement with the experimental results.

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

Behavior of continuous RC deep girders that support walls with long end shear spans

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.385-403
    • /
    • 2011
  • Continuous deep girders which transmit the gravity load from the upper wall to the lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/total depth: 1.8 < a/h < 2.5): one designed by the conventional approach using the beam theory and two by the strut-and-tie approach. The conclusions are as follows: (1) the yielding strength of the continuous RC deep girders is controlled by the tensile yielding of the bottom longitudinal reinforcements, being much larger than the nominal strength predicted by using the section analysis of the girder section only or using the strut-and-tie model based on elastic-analysis stress distribution. (2) The ultimate strengths are 22% to 26% larger than the yielding strength. This additional strength derives from the strain hardening of yielded reinforcements and the shear resistance due to continuity with the adjacent span. (3) The pattern of shear force flow and failure mode in shear zone varies depending on the amount of vertical shear reinforcement. And (4) it is necessary to take into account the existence of the upper wall in the analysis and design of the deep continuous transfer girders that support the upper wall with a long end shear span.

Development of Shear Flow Calculation Program for Ship Hull Transverse Section (선체 횡단면의 전단흐름 계산 프로그램 개발)

  • Nho, In Sik;Lee, Jeong-Youl;Woo, Jeong-Jae;Oh, Young-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.188-194
    • /
    • 2016
  • Accurate estimation of shear flows in thin-walled beam section is the key issue to evaluate shear stress distribution of ship hull transverse section under the shear forces acting on hull girder. It is regarded that the method using the warping functions obtained by finite element formulation is the state of the art of this field. Recently, however, IACS took effect the new version of CSR in which direct calculation process of shear flow was suggested. In the direct calculation process, shear flow of ship hull section can be obtained by the addition of determinate and indeterminate shear flows calculated respectively. So, in this paper, the shear flow evaluation codes based on the process proposed by IACS CSR and warping function based method were developed respectively. The calculated results of shear flows for the several examples of ship sections were compared with each other and considered in detail.

A Numerical Study on the Occurrence Scope of Underground Cavity and Relaxation Zone Considering Sewerage Damage Width and Soil Depth (하수관거 파손폭과 토피고를 고려한 지중 공동 및 이완영역 발생 규모에 관한 수치해석적 연구)

  • You, Seung-Kyong;Ahn, HeeChul;Kim, Young-Ho;Han, Jung-Geun;Hong, Gigwon;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • This paper described a result of finite element analysis considering sewerage damage scale and soil depth, in order to analyze quantitatively for cavity and relaxation zone of underground due to sewerage damage. The mechanical model, which was verified by previous studies, was applied to the finite element analysis. In addition, the mechanical behavior of the soil around the sewerage damage due to the soil loss was simulated by using the forced displacement. Based on finite element analysis results, characteristics of the void ratio distribution, ground subsidence, and shear stress distribution according to sewerage damage scale and soil depth were analyzed. And then, The boundaries of the underground cavity and relaxation zone were determined by using the shear stress reduction characteristics of the ground. Also, an occurrence scope of the cavity and relaxation zone was quantitatively evaluated by the change of sewerage damage scale and soil depth.

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.