• 제목/요약/키워드: Shear Stress Distribution

검색결과 573건 처리시간 0.031초

FEM을 이용한 구체무단변속기의 응력해석 (Stress Analysis of the S-CVT using Finite Element Method)

  • 김정윤
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.41-47
    • /
    • 2008
  • This article deals with the stress analysis of the friction drive, which transmits the power via the rolling resistance on the contract area between the two rotating bodies. On the contact area, friction drives are normally involved with shear stress due to the transmitted force, as well as normal stress. Thus the stress analysis including the shear stress is necessary for the design of the friction drive. Hertzian results can be used to estimate the normal stress distribution and elastic deflection of the contact area, although the shear stress distribution is not well defined. In order to investigate the shear stress distribution and its effects in a friction drive, we have performed the stress analysis of the spherical continuously variable transmission(CVT) using finite element method. The spherical CVT is one of friction drives, which is used in small power applications. The numerical results show that the normal stress distribution is not affected by the transmitted shear force, and the maximal shear stress is increased in small amount along with the shear force.

  • PDF

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

평판(平板)에 붙은 Stiffener 속에서의 전단응력(剪斷應力)의 분포(分布) (The Maximum Shear Stress Distribution in a Stiffener attached to a Plate)

  • 임상전
    • 대한조선학회지
    • /
    • 제3권1호
    • /
    • pp.19-24
    • /
    • 1966
  • The maximum shear stress distribution in a stiffening flat attached to a plat undergoing a single tensile force has been investigated by photoelastic method. In the experiments a photoelastic model, as shown in Fig. 1, has been studied in the fields of a polariscope, as shown in Fig. 2. Fig. 3 shows the isoclinics and Fig. 4 and 5 are stress trajectories of the principal stresses and maximum shear stresses, respectively. Fig. 6 is the isochromatics in light field. The maximum shear stress at each point in the stiffener were determined from the isochromatics in both of light field of light field and dark field. Then the maximum shear stresses were divided by the average shear stress in the model, to obtain the ratio ${\tau}max/{\tau}av$ at each point. Finaly the variations of the ratio ${\tau}max/{\tau}av$ along the horizontal and vertical lines in the stiffener have been plotted, as shown in Fig. 7 and 8. The conclusions reached in this investigation are as follows: (1) The shear stresses transmitted to the stiffener through the juncture are concentrated on the end portions. (2) The maximum shear stress at the ends of the stiffener reaches to about 4 times of average shear stress. (3) The irregularities in the stress distribution are restricted in the end portions of the stiffener.

  • PDF

철도차량용 휠과 레일의 접촉특성 및 응력 해석 (Contact Characteristic and Stress Analysis of Wheel-Rail for Rolling Stock)

  • 성기득;양원호;조명래;김철
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.148-156
    • /
    • 2000
  • In this paper, we investigate contact characteristic of wheel-rail interface for rolling stock using the finite element method. Contact stress distribution due to the rail mounting slope is obtained in order to reduce the contact stress. Stress analysis of the rail, firstly, is performed one subjected to elliptical pressure based on Hertz theory. Secondly, we perform stress analysis of the rail subjected to contact stress obtained by this study. Results for the maximum shear stress, its location and the principal shear stress distribution are compared.

  • PDF

둥근 엠보싱 형상이 있는 슬라이더 베어링의 경사도에 따른 윤활효과 (Lubrication Effect of Slider Bearing with Round Embossed Surface According to Its Slider Slope)

  • 진도훈;윤문철
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.284-290
    • /
    • 2014
  • The influence of round embossed surface on slider bearing characteristics and its load carrying capacity is discussed for thin film effect of embossed slider bearing. For the numerical computation of lubrication parameters such as pressure, load capacity and shear stress that are normalized and a Reynolds equation is used for the analysis of embossed slider bearing characteristics. For this purpose, the finite difference method of central difference scheme is used in this study. In a slider bearing with embossed form, several simulation parameters such as pressure, load capacity and shear stress of the bearing can be obtained according to independent parameters such as the slope of the slider bearing and number of embossing in the upper slider. Also this results can be summarized and be stored in sequential data file for latter analysis. After all, their distribution of the pressure and shear stress parameters can be displayed and be analyzed easily by using the developed program with matlab GUI technique. The independent parameters such as a number of embossing and a slope of the embossed surface slider are used for discussing simulation parameters of pressure distribution, shear stress and load carrying capacity of the round embossing. These study results reported in this paper should be applied to the other shaped slider bearing with a rectangular embossed surface or rectangular waved surface.

협착된 경동맥내 천이 유동 수치 해석 (Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery)

  • 김동민;황진율;민두재;조원민
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

Determination of stress state in chip formation zone by central slip-line field

  • Andrey Toropov;Ko, Sung-Lim
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2003
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along single of several shear surfaces. separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests new approach to the constriction of slip-line field, which Implies uniform compression in chip formation zone. On the base of given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination have been considered. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model could be useful in solution of various problems of machining.

  • PDF

정적 인발하중을 받는 암반 앵커의 거동;텐던-그라우트 경계면의 전단응력 분포 (Rock Anchors Subjected to Static Uplift Loads ; Shear Stress Distribution of Tendon-Grout Interface)

  • 임경필;조남준;황성일
    • 한국지반공학회논문집
    • /
    • 제15권6호
    • /
    • pp.143-154
    • /
    • 1999
  • 본 연구에서는 암반 앵커의 텐던-그라우트 경계면의 하중전달기구(load transfer mechanism)를 규명하기 위하여 암질이 강한 자연 화강암과 콘크리트로 제작된 모형 암반에 시공된 모형 암반 앵커에 대한 정적 인발험(static uplift test)을 수행하였다. 불연속면이 텐던-그라우트의 전단응력 분포에 미치는 영향을 밝히기 위하여 수평한 절리면을 갖고 있는 모형암반도 제작되었다. 실험 결과 불연속면이 없는 암반에 시공된 암반 앵커의 경우 앵커 상단에 심한 응력 집중이 발생함을 알 수 있었고 불연속면이 증가할수록 깊이에 따라 균일한 전단응력 분포를 나타냈다. 또한, 실험결과에 대한 회귀분석을 통하여 텐던-그라우트 경계면의 전단응력 분포에 관한 경험식을 산정하였으며, 실험에 의한 전단응력 분포는 텐던 직경의 2~3배 깊이에서는 이론에 의한 전단응력 분포 보다 작게 나타나고 그 이하에서는 반대 현상을 관찰할 수 있었다.

  • PDF

지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석 (Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability)

  • 허준
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

엔트로피 개념을 이용한 개수로에서 등류 및 부등류 흐름의 전단응력 산정 (The Estimation of Shear Stress in Uniform and Nonuniform Flow by the Entropy Concept)

  • 추연문;추태호;양다운;김중훈
    • 한국습지학회지
    • /
    • 제19권2호
    • /
    • pp.202-210
    • /
    • 2017
  • 전단응력은 여러 분야에서 사용하는 매우 중요한 역학 인자 중 하나이며, 인공수로의 설계를 위해서 중요하다. 현재 전단응력은 과거에 정해진 계산법을 사용하고 있지만, 사용되는 식에서 바닥전단응력과 에너지경사와 같이 실제로 측정하거나 계산하기 어려운 요소들이 존재한다. 특히, 에너지경사는 산정하기 매우 어려운 인자이며, 전단응력분포를 구하기위해서는 에너지경사가 있어야만 산정할 수 있지만, 경계층의 유속기울기와 유속을 측정하는 것은 현실적으로 어려운 부분이다. 또한 전단응력분포 중 바닥전단응력은 직접 측정하기 매우 어렵고, 유속에 비해 연구가 다소 더딘 실정이다. 전단응력분포를 정확하게 산정할 수 있다면, 바닥전단응력과 에너지경사를 손쉽게 산정할 수 있다. 본 연구에서는 에너지경사를 반영하지 않고 엔트로피 M을 이용하여 평균유속과 전단응력분포를 간단히 산정하는 연구를 진행하였고, 적용한 식의 효용성을 증명하기 위해 기존의 실험실 실측 자료를 사용하였다. 이는 그래프를 통해 응력분포를 나타내어 비교분석을 하였으며, 등류와 부등류에서 각각 결정계수는 0.930-0.998까지로 거의 일치하였다.