• 제목/요약/키워드: Shear Reinforcement

검색결과 1,285건 처리시간 0.022초

설계변수에 따른 철근콘크리트 보의 전단강도 변화에 대한 실험연구 (Experimental Study on Variation of Shear Strength of Reinforced Concrete Beams According to Design Parameters)

  • 오동현;최경규;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.279-282
    • /
    • 2005
  • Experimental study is performed to investigate the variation of shear strength of reinforced concrete beams according to design parameters. The major parameters are loading condition, shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, prestress and boundary rigidity.14 reinforced concrete beams without web reinforcement are tested under monotonic downward loading. The shear strength of the tested specimens were compared with the prediction by design code and Choi's method.

  • PDF

Experimental investigation on the shear capacity of RC dapped end beams and design recommendations

  • Wang, Quanfeng;Guo, Zixiong;Hoogenboom, Pierre C.J.
    • Structural Engineering and Mechanics
    • /
    • 제21권2호
    • /
    • pp.221-235
    • /
    • 2005
  • In this paper, the shear resistance behaviour of reinforced concrete (RC) dapped end beams is investigated by 24 tests until failure load. The main parameters considered are the dapped end height, the type and effective range to provided the stirrups and the bent form of the longitudinal reinforcement. The failure behaviour of dapped end beams is presented and some conclusions are given. Inclined stirrups and longitudinal bent reinforcement have more influence on the shear capacity than vertical stirrups. Additionally, the shear mechanism of dapped end beams is analysed. Relatively simple semi-empirical equations for shear strength have been derived based on the results of 22 dapped end beams. The predicted results are in close agreement with the experimental ones. Finally, some design suggestions for the ultimate shear strength of dapped end beams are presented.

스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가 (Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model)

  • 박홍근;엄태성;박종철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

각종 지오텍스타일 보강재에 의한 보강점성토의 보강효과 비교 (Reinforcement Effect Comparison of Reinforced Clayey Soil with Various Geotextile)

  • 송성원;이재열;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.121-128
    • /
    • 1999
  • Recently, research of reinforcement mechanism in a sense of soil mechanics has been under way by many researchers with developing various kinds of geoteutiles. But it must be consider that reinforcement effect largely depends on used geotextile even if it is used on same in-site condition. As a matter of fact it is not necessarily that reinforcement effect appears in all the case of reinforced soil construction. It means that appropriate geotextile coincided with the intention has to be selected and adequate examination is needed. In this study, reinforcement effect with various kinds of geotextiles are compared through a series of direct shear tests. Based on the test results, shear strength characteristics and reinforced effects are investigated quantitatively and qualitatively considering the confining stress, reinforcement characteristics and number of reinforcement.

  • PDF

철근콘크리트 보의 최대 전단철근비에 대한 평가 (Evaluations of the Maximum Shear Reinforcement of Reinforced Concrete Beams)

  • 황현복;문초화;이정윤
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.719-727
    • /
    • 2009
  • 변환각트러스모델에 근거한 EC2-02 기준식이나 CSA-04 기준식의 최대 전단보강철근비는 반경험적 방법에 근거한 ACI 318-08 기준식이나 AIJ-99 기준식에서 요구하는 최대 전단보강철근비와 많은 차이가 있다. ACI 318-08 기준식, CSA-04 기준식 및 EC2-02 기준식은 콘크리트의 압축강도에 따라서 최대 전단보강철근비가 증가하지만 AIJ-99 기준식은 일정한 값이 적용된다. 고강도콘크리트에 대하여 EC2-02 기준식이나 CSA-04 기준식이 요구하는 최대 전단보강철근비는 ACI 318-08 기준식이 요구하는 최대 철근비에 비하여 매우 크다. 이 연구에서는 10개의 철근콘크리트 보 실험을 통하여 전단보강철근의 양과 콘크리트의 압축강도가 최대 전단보강철근비에 미치는 영향을 파악하였다. 실험에 의하면 ACI 318-08 기준식이나 AIJ-99 기준식에서 요구하는 최대 전단보강철근비보다 최대 약 1.9배까지 전단보강철근을 많이 배근하였음에도 불구하고 실험 결과는 전단보강철근이 항복한 이후에 부재가 최대 내력에 도달하였다.

면외하중을 받는 보형 SC구조 시험체의 휨 및 전단특성에 관한 실험적 연구-시험방법을 중심으로- (Experimental Study on Bending and Shear Behavior of SC Structures under Out of Plane Load)

  • 박동수;정원섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.65-68
    • /
    • 2008
  • 구조실험에서 실험장치의 구성방법은 실험 결과에 결정적인 영향을 미치는 중요한 요소이다. 가력 장치와 치구를 어떻게 구성하느냐에 따라서 의도하는 실험조건이 구현될 수 있다. 특히, 실물구조물과 같은 대형 실험체를 이용하여 실험하는 경우에는 실험장치를 구성하는 경제적 비용을 감안하여 정확한 하중을 가력하기 위한 실험장치의 구성이 더욱 중요하다. 본 논문은 이와 같은 필요성에 의하여 구조실험시설에서 일반적으로 이용하고 있는 설비를 이용하여 경제적이고 효과적인 실험장치를 구성하여 대형 보형실험체의 실험을 수행하고 그 결과를 기술하기 위하여 작성되었다.

  • PDF

Crack-controlled design methods of RC beams for ensuring serviceability and reparability

  • Chiu, Chien-Kuo;Saputra, Jodie;Putra, Muhammad Dachreza Tri Kurnia
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.757-770
    • /
    • 2022
  • For the design of flexural and shear crack control for reinforced concrete (RC) beams related to serviceability and reparability ensuring, eight simply-supported normal-strength reinforced concrete (NSRC) beam specimens are tested and the existing high-strength reinforced concrete (HSRC) experimental data are included in the investigation of this work. According to the investigation results of flexural and shear cracks, this works modifies the existing design formulas to determine the spacing of the tensile reinforcement for the flexural crack control of a HSRC/NSRC beam design. Additionally, for a specified shear crack width of 0.4 mm, the allowable stresses of the shear reinforcement are also identified. For the serviceability and reparability ensuring of HSRC/NSRC beams, this works proposes the relationship curves between the maximum flexural width and allowable stress of the tensile reinforcement, and the relationship curves between the shear crack width and allowable shear force that can be used to do the crack width control directly.

콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석 (An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure)

  • 김광수
    • 한국안전학회지
    • /
    • 제23권3호
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.

An Experimental Study on Shear Strength of Chemically-Based Self-Consolidating Concrete

  • Arezoumandi, Mahdi;Volz, Jeffery S.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.273-285
    • /
    • 2013
  • An experimental investigation was conducted to compare the shear strength of full-scale beams constructed with chemically-based, self-consolidating concrete (SCC) with conventional concrete (CC). This experimental program consisted of 16 rectangular beams (12 without shear reinforcing and 4 with shear reinforcing in the form of stirrups), 8 beams for each mix design. Additionally, three different longitudinal reinforcement ratios were evaluated within the test matrix. The beam specimens were tested under a simply supported four-point condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (U.S., Australia, Canada, Europe, and Japan) and a shear database of CC specimens. This comparison indicates that chemically-based SCC beams possess comparable shear strength as CC beams.