• 제목/요약/키워드: Shear Noise

검색결과 428건 처리시간 0.027초

회전관성 및 전단변형을 고려한 변단면 포물선 아치의 자유진동 (Free Vibrations of Tapered Parabolic Arches Considering Rotatory Inertia and Shear Deformation)

  • 오상진;박광규;최규문;이종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.846-851
    • /
    • 2003
  • The differential equations governing free, in-plane vibrations of non-circular arches with non-uniform cross-section, including the effects of rotatory inertia, shear deformation and axial deformation, are derived and solved numerically to obtain frequencies. The lowest four natural frequencies are calculated for the prime parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. Three general taper types for rectangular section are considered. A wide range of arch rise to span length ratios, slenderness ratios, and section ratios are considered. The agreement with results determined by means of a finite element method is good from an engineering viewpoint.

  • PDF

전단변형을 고려한 불연속 단면을 갖는 변화곡률 아치의 자유진동 해석 (Free Vibration Analysis of Stepped Noncircular Arches with Shear Deformation)

  • 오상진;모정만;진태기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.768-771
    • /
    • 2005
  • The purpose of this paper is to investigate the free vibration of stepped noncircular arches. Taking into account the effects of axial deformation, rotatory inertia and shear deformation, the governing differential equations are solved numerically for the elliptic and sinusoidal geometries with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. The lowest four natural frequencies are presented as functions of four non-dimensional system parameters: the arch rise to span length ratio, the slenderness ratio, the section ratio, and the discontinuous sector ratio.

  • PDF

층간 분리가 있는 지능형 복합재 적층판의 과도응답해석 (Transient Analysis of Delaminated Smart Composite Laminates)

  • 김흥수;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.469-475
    • /
    • 2004
  • The transient analysis of delaminated smart composite laminates is studied using an improved layerwise laminate theory. The theory is capable of capturing interlaminar shear stresses that are critical to delamination. The presence of discrete delamination is modeled through the use of Heaviside unit step functions. Stress free boundary conditions are enforced at all fee surfaces. Continuity in displacement field and transverse shear stresses are enforced at each ply level. In modeling piezoelectric composite plates, a coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. Numerical analysis is conducted to investigate the effect of nonlinearity in the transient vibration of bimodular behavior caused by the contact impact of delaminated interfaces. Composite plates with delamination, subject to external loads and voltage history from surface bonded sensors, are investigated and the results are compared with corresponding experimental results and plates without delamination.

  • PDF

점탄성층을 삽입한 $0^0&90^0$ 섬유강화 복합재료의 감쇠계수에 대한 연구 (A Study on Material Damping of the $0^0&90^0$ Laminated Composite Sandwich Cantilever Beam inserted with Viscoelastic layer)

  • 임종휘;서윤종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2004
  • In this paper it is to establish a comprehensive model for predicting damping in sandwich Laminated composites on the basis of strain energy method. In this model, the effect of transverse shear on the material damping has been considered with in-plane stresses. Results showed that the viscoelastic core thickness in the sandwich beam and the Length of a beam have a high impact on the material damping. The transverse shear appears to be highly influenced by the damping behavior in $0^0$ laminated sandwiched composites. However, it is Little influenced by that in $90^0$ laminated sandwiched composites.

  • PDF

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

자동차용 고무호스의 진동 절연성능 향상에 관한 연구 (Improvement of Insulation Performance of Vehicle Rubber Hoses)

  • 정헌섭;민병권;이성훈;우희수;박현호
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.837-844
    • /
    • 2012
  • We considered an approach in terms of materials for improvement of insulation performance of vehicle rubber hoses. Ethylene propylene rubber(EPDM) for heater hoses in cooling system and acrylic rubber(AR) for intercooler hose in intake system were chosen for mixing for the vibration and noise performance. We modified EPDM and AR through changing compound of base polymer, reinforcement fillers and additives. Dynamic mechanical analysis(DMA) was used to measure viscoelastic properties such as shear modulus and loss factor($tan{\delta}$). Vehicle acceleration test was also conducted to observe indoor changes in insulation performance of hoses.

압축 및 전단탄성을 이용한 원형 방진 고무 마운트 개발 (Development of Conical Rubber Mount using Compression and Shear Elasticity)

  • 김종연;권오병;김영구;김영중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.393-398
    • /
    • 2002
  • Rubber isolator has properties that can adjust easily stiffness and can be formed various shape. Also, it has high damping and is effective about structure-borne noise at high frequency range, So, rubber mount has widely used to isolate vibration at industrial equipment and construction field. However, rubber material is nonlinear and require enough consideration about shape factor whenever it is designed. The purpose of this paper is to develop conical rubber mount using compression and shear elasticity. The first, the dimension of mount is calculated by theoretical analysis considering design condition and static characteristics have been analyzed by FEM method. In addition, the fatigue test of rubber mount is performed to get reliability for product life and dynamic stiffness test is executed to get dynamic magnification factor. Finally, transmissibility test of vibration isolator has been carried out to suggest normal quantity data about vibration isolation.

  • PDF

제진강판의 기계적 특성평가와 자동차오일팬으로의 적용 (Evaluation of mechnical preoperties of vibration damping steel sheets and their application to automobile engine oil pan)

  • 정재환;민병두;하용철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.99-118
    • /
    • 1994
  • In recent years reduction in noise and vibration in automobile has been strongly required not only from the standpoint of environmental regulations but also for raising the commercial value and ride comfort. Vibration damping steel sheets, which are composites made by sandwitching a visco-elastic resin layer between two steel sheets, have been developed as effective noise-abating materials and have found a growth of use in automobile industries. Vibration damping steel sheets for commercial use must be excellent in vibration damping property, press formability and spot weldability, but are inferior to ordinary steel sheets. In this study, the mechanical properties of vibration damping steel are evaluated, and press formability is analysed on the basis of those properties and shear bonding strength. The development of engine oil pan using damping steel sheets are also reported, focusing on serious problems in oil pan drawing.

모델 실험체를 이용한 공동주택 바닥충격음 저감에 관한 실험적 연구 (An Experimental Study on the Reduction of Floor Impact Sound in Apartment Houses by using Model Test)

  • 김항;기노갑;박현구;송민정;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1044-1047
    • /
    • 2004
  • This aim of this study is is an experimental study to introduce the Reduction method of Floor Impact Sound in Apartment Houses by using Model Test, We are measured the floor impact sound in Rahamen and Apartment with Shear Wall and Post-tensioning. There is comparison between Rahmen Structure and Apartment with Shear Wall. The main results from this study are effective in reduction of heavt-weight The slab was constructed by rahamen structure. Heavy-weight can reduced by upgrading naturial frequency of floor impact sound in rahmen structure.

  • PDF

네변이 고정된 사각 샌드위치 평판에서의 수직 및 전단 감쇠 효과 (Shear and Normal Damping Effects of Square Sandwich Plates with Four Edges Clamped)

  • 이병찬;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.217-223
    • /
    • 1996
  • A structure's vibration characteristic is determined by modal property of the system. Through proper vibration analysis or experiments, the structure can be modified to reduce of vibration and noise. This paper is concerned with the natural frequency and modal loss factor of sandwich plates with viscoelastic core. The effects of shear and normal strain in the viscoelastic layer are investigated on modal properties, natural frequency and modal loss factor, by changing geometry parameter and viscoelastic material property of sandwich plates. The errors of modal parameters resulting from neglecting the extension or compression in the core material for simply supported(S-S-S-S) case are compared with those for clamped(C-C-C-C) boundary condition. Finite difference method(FDM) is utilized as numerical analysis technique of square sandwich plates for fixed boundary conditions. In order to reduce computation time and increase accuracy, improved finite difference expression with fourth order truncation error was used.

  • PDF