• Title/Summary/Keyword: Shear Noise

Search Result 428, Processing Time 0.028 seconds

Forced Vibration Analysis of Damped Composite Beam (복합단면 감쇠보의 강제진동해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Bae, Soo-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.411-414
    • /
    • 2006
  • In this paper, the forced vibration of damped composite beam with arbitrary section was analyzed. The damping material was assumed to have either complex shear modulus or complex Young???smodulus. Damped composite beam could be modeled using beam elements with less D.O.F. rather than solid elements. Finite element method for these methods was formulated and programmed using complex values. The results of frequency responses revealed good agreement with those of NASTRAN in several beam structures.

  • PDF

Free Vibration Analysis of Thick Plates on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓여진 후판의 자유진동해석)

  • 김일중;오숙경;이효진;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.852-857
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of thick plates on inhomogeneous Pasternak foundation by means of finite element method and providing kinematic design data lot mat of building structures. This analysis was applied for design of substructure on elastic foundation. Mat of building structure may be consisdered as a thick plate on elastic foundation. Recently, as size of building structure becomes larger, mat area of building structure also tend to become target and building structure is supported on inhomogeneous foundation. In this paper, vibration analysis or rectangular thick plate is done by use or serendipity finite element with 8 nodes by considering shearing strain of plate. The solutions of this paper are compared with existing solutions and finite element solutions with 4${\times}$4 meshes of this analysis are shown the error of maximum 0.083% about the existing solutions. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter.

  • PDF

A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile) (SIP 말뚝의 주면마찰 특성에 관한 연구)

  • 천병식;임해식;강재모;김도형;지원백
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF

Free Vibrations of Tapered Circular Arches Considering Rotatory Inertia. Shear Deformation and Axial Deformation (회전관성, 전단변형 및 축변형을 고려한 변단면 원호아치의 자유진동)

  • 오상진;모정만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1254-1259
    • /
    • 2001
  • This paper deals with the free vibrations of circular arches with variable cross-section. The differential equations governing free, in-plane vibrations of tapered circular arches, including the effects of rotatory inertia, shear deformation and axial deformation, are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for the quadratic arches with hinged-hinged and clamped-clamped end constraints. Three general taper types for a rectangular section are considered. The lowest four natural frequencies and mode shapes are presented over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio and the section ratio.

  • PDF

Research for Step Motor using Piezoelectric Torsional Actuator (압전회전작동기를 이용한 스텝모터에 관한 연구)

  • Kim, Jun-Hyuk;Chung, Dal-Do;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.279-282
    • /
    • 2004
  • In this paper, A new type of piezoelectric step motor using piezoelectric torsional actuator and a pair of one-way clutch bearing is designed, manufactured and tested. The torsional actuator consists of 16-polygonal tube that can produce angular displacement using shear mode of piezoceramic. One-way clutch bearing convert oscillation of torsional actuator into continuous rotation. After performance testing of torsional actuator, the optimum condition for driving motor is investigated in terms of wave shape, excitation frequency and electrical field. The performance of the motor is experimentally evaluated. As a result, square wave has larger rotation speed than sin wave, and the maximum rotation speed of 57 rpm is measured at 3850 Hz and 100V/mm.

  • PDF

Evaluation of Material Property of Asphalt Pavement with Temperature using HWAW method (HWAW방법을 사용한 아스팔트 포장층의 온도에 따른 물성치 변화 결정)

  • Park, Hyung-Choon;Lee, Mie-Yea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1417-1421
    • /
    • 2008
  • Temperature variation affect the response of asphalt pavement and should be considered in the evaluation of performance of the pavement. In this paper, HWAW method is applied to evaluate shear wave velocity(or shear modulus) of the asphalt pavement with temperature. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. This method minimize effect of noise and is not affected by mode jump effect which cause erroneous result when surface wave method is applied to pavement evaluation. In order to estimate the applicability of HWAW method, field tests were performed in 1 site and preliminary correlation between shear wave velocity(shear modulus) and asphalt pavement average temperature.

  • PDF

Dynamic Characteristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact (저속 충격시 고차이론을 이용한 복합 재료 판의 동적 특성)

  • 심동진;김지환
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higer order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. This is accomplished by using a stress recovery technique using the in-plane stresses. The results compared with previous investigations showed good agreement. It can be seen that this method of analyzing impact problems is more efficient than current three dimensional methods in terms of time and expense.

  • PDF

The Significance of Transverse Shear on Vibration Damping of 90-degree Unidirectional Laminated Composites (단일방향 $90^{\circ}$적층 보의 횡전단응력이 진도감쇠에 미치는 효과)

  • 임종휘
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • On the basis of the concept of strain energy-weighted dissipation, an enhanced model for predicting damping in laminates is presented. In this model, the influence of transverse shear on $90^{\circ}$ laminates has been included with those of in-plane stresses on beam. Also, an experimental damping measurement is conducted with changing the length and the thickness of laminated beam specimen for confirmation of the model prediction. The theoretical predictions in $90^{\circ}$laminates were reasonably compared with experimental data. The transverse shear reveals to have an influence on the damping, behavior in $90^{\circ}$ laminates.

  • PDF

Study on Application of Spatial Signal Processing Techniques to Wavenumber Analysis of Vibration Data on a Cylindrical Shell (원통셸의 진동 데이터에 대한 파수해석을 위한 공간신호처리 방법의 응용 연구)

  • Kil, Hyun-Gwon;Lee, Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.863-875
    • /
    • 2010
  • The vibration of a cylindrical shell is generated due to elastic waves propagating on the shell. Those elastic waves include propagating waves such as flexural, longitudinal and shear waves. Those also include non-propagating decaying waves, i.e. evanescent waves. In order to separate contributions of each type of waves to the data for the vibration of the cylindrical shell, spatial signal processing techniques for wavenumber analysis are investigated in this paper. Those techniques include Fast Fourier transform(FFT) algorithm, Extended Prony method and Overdetermined Modified Extended Prony method(OMEP). Those techniques have been applied to identify the waves from simulated vibration signals with various signal-to-noise ratios. Futhermore, the experimental data for in-plane vibration of the cylindrical shell has been processed with those techniques to identify propagating waves(longitudinal, shear and flexural waves) and evanescent waves.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF