• Title/Summary/Keyword: Shear Lip

Search Result 16, Processing Time 0.029 seconds

A Study on the Effect and Formation of Shear Lip for Al 2024-T3 Materials (Al 2024-T3재에 있어서 Shear Lip의 생성과 그 영향에 관한 연구)

  • 최병기;오환교
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 1993
  • This Paper aims to examine the effect of shear lip formation from cross-sections on fatigue crack propagation rate in order to study the fatigue fracture behavior of the high strength aluminum material (Al 2024-T3). The following tests were achieved from this research. 1. As a result of depressing shear lip artificially by adding a side groove to a specimen, it is shown that the propagation rate of fatigue crack is faster than that of general specimen. 2. Through the two-step load test, the phenomenon that the shear lip decreases In the part of changed load gets observed. Consequently It Is shown that the crack propagation rate gets faster.

  • PDF

Enhancement of Mixing in an Underexpanded Sonic Jet by an Elliptic Jet Screech Reflector (과소팽창 음속 제트에서 타원형상의 제트 스크리치 반사판을 이용한 혼합증진)

  • Kim Jung Hoon;Kim Jin-Hwa;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.221-224
    • /
    • 2002
  • A technique of mixing enhancement in an underexpanded sonic round jet is studied with fully expanded jet Mach number 1.5. Tonal sound, jet screech can be produced at some underexpansion pressure ratio in a sonic jet. Since the jet screech excites the initial Jet shear layer to change the flow, a reflector which focuses the jet screech near the nozzle lip is designed. The reflector has an elliptic shape of which two foci are located near the nozzle lip and the jet screech source region. Jet screech tone near the nozzle lip increases with the elliptic reflector and spreading of the jet largely increases. It is concluded that mixing enhancement of the jet with the elliptic reflector is attributed to large scale structures which are initially excited by the increased jet screech.

  • PDF

Flexural behavior of cold-formed steel concrete composite beams

  • Valsa Ipe, T.;Sharada Bai, H.;Manjula Vani, K.;Zafar Iqbal, Merchant Mohd
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.105-120
    • /
    • 2013
  • Flexural behavior of thin walled steel-concrete composite sections as cross sections for beams is investigated by conducting an experimental study supported by applicable analytical predictions. The experimental study consists of testing up to failure, simply supported beams of effective span 1440 mm under two point loading. The test specimens consisted of composite box and channel (with lip placed on tension side and compression side) sections, the behavior of which was compared with companion empty sections. To understand the role of shear connectors in developing the composite action, some of the composite sections were provided with novel simple bar type and conventional bolt type shear connectors in the shear zone of beams. Two RCC beams having equivalent ultimate moment carrying capacities as that of composite channel and box sections were also considered in the study. The study showed that the strength to weight ratio of composite beams is much higher than RCC beams and ductility index is also more than RCC and empty beams. The analytical predictions were found to compare fairly well with the experimental results, thereby validating the applicability of rigid plastic theory to cold-formed steel concrete composite beams.

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

Microstructures and Tensile Characteristics of Ti-6AI-4V Alloy by Double Solution Treatment (2중 용체화처리에 따른 Ti-6AI-4V합금의 미세조직과 인장특성)

  • Choe, Hyeong-Jin;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.626-637
    • /
    • 1994
  • The relationship between microstructures and tensile properties depending on various solution treatment temperature and cooling rate of Ti-6A1-4V alloy have been investigated. The complex and random edge shaped $\alpha$ phases were formed after the 1st solution treatment at $\beta$ region and the 2nd solution treatment at $900^{\circ}C$, which was followed by furnace cooled. When the specimen was subjected to the 2nd solution treated at $950^{\circ}C$, and furnace cooled, $\alpha$ phase changed its morphology to equiaxed structure. The aspect ratio showing the appreciation basis of microstructual refinement decreases with the temperature of 1st and 2nd solution treatment. The slightly decrease in strength were observed in the Widmanstltten structures than in the bimodal structures. Also, ductility of the Widmanstatten structures was considerable lower than that of bimodal structures. The tensile-fractured surface of the Widmanstatten structures appears to be quasi-cleavage and dimple fracture, while that of the bimodal structures was the type of ductile fracture. The tensile fracture surface of the bimodal structures can easily be separated into cental crack areas lying generally perpendicular to the tensile axis and shear lip areas lying at angles of high shear(around 45 deg.) to the tensile axis.

  • PDF

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

Effect of Side Groove on the Elastic Plastic Fracture Toughness of Gas Piping Material (가스배관재의 탄소성파괴인성에 미치는 측면홈 영향)

  • 임만배;차귀준;윤한기;공유식;김정호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.63-68
    • /
    • 2001
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ATM E813-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_IC. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.

  • PDF

NUMERICAL STUDY ON THE CHARACTERISTICS OF VORTEX FREQUENCY AND LAMINAR MIXING OF A PASSIVE SCALAR IN COAXIAL JET FLOWS (동축제트의 와류주파수 및 혼합특성에 대한 수치해석 연구)

  • Kim, Won-Hyun;Park, Tae-Seon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.21-26
    • /
    • 2007
  • This study focuses on the near-field vortical structure and dynamics of coaxial jets. The characteristics of laminar flow and mixing in coaxial jets are investigated using a unsteady flow simulation. In order to analyze the geometic effects on the vortical structure, several cases of different configurations are selected for various values of the velocity ratio of inner jet to outer jet. From the result, it is confirmed that mixing is promoted by the development of vortical structure and the interaction between inner jet and outer jet. This feature is strongly related to the vortex frequency in the shear-layers. The vortex frequency depends on the velocity ratio and the lip thickness of inner nozzle, but the outer pipe length has no effect on the frequency variation.

  • PDF

NUMERICAL STUDY ON THE CHARACTERISTICS OF VORTEX FREQUENCY AND LAMINAR MIXING OF A PASSIVE SCALAR IN COAXIAL JET FLOWS (동축제트의 와류주파수 및 혼합특성에 대한 수치해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.49-55
    • /
    • 2009
  • This study focuses on the near-field vortical structure and dynamics of coaxial jets. The characteristics of laminar flow and mixing in coaxial jets are investigated using a unsteady flow simulation. In order to analyze the geometric effects on the vortical structure, several cases of different configurations are selected for various values of the velocity ratio of inner jet to outer jet. From the result, it is confirmed that the flow mixing is promoted by the development of vortical structure and the interaction between inner jet and outer jet. This feature is strongly related to the vortex frequency in the shear-layers. The vortex frequency depends on the velocity ratio and the lip thickness of inner nozzle, but the outer pipe length has no effect on the frequency variation.