• Title/Summary/Keyword: Shape-Separation

Search Result 404, Processing Time 0.026 seconds

Effects of Resistant Starch on the Viscosity and Stability of Fat-Free Dressing (무지방 드레싱의 점도와 안정성에 미치는 저항전분의 효과)

  • Song, Ji-Young;No, Jun Hee;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • Purpose: To develop fat-free dressing containing a resistant starch (RS) as a dietary fiber, the viscosity and stability of various type RSes prepared from wheat, maize, potato, rice, waxy rice, and amaranth starches were investigated by using Brookfield viscometer. The shape of RS granule in the dressing during storage was also observed. Methods: The viscosity of fat free dressing with different retrograded RS3 (RS3V) prepared from waxy rice starch with 0.1% lemon vinegar and ascorbate mixed solution had higher RS3 that was maintained constant during storage. Annealing and heating prior to cross-linking, and heating after cross-linking increased RS level of RS4 type starches. Results: The viscosities and stabilities of dressings with RS were different depending on starch sources and RS preparation conditions. The heated RS4 (HRS4) increased in viscosity and stability with RS4 addition. Especially the fat-free dressings with HRS4 prepared from rice and waxy rice starches maintained stability regardless of separation after one month storage with only 7% separation after 6 month storages. The shape of RS4 granule in acidic medium of dressing did not change until 6 months. Conclusion: In this study, RS4 made by the rice and waxy rice starches showed high viscosity and maintained stability of the fat-free dressings during storage.

Internal Short-circuiting Estimation in Clearwell : Part A. Improving T10/T Using Intra Basin and Diffuser Wall by Applying ISEM to Field (정수지 내부 단락류 발생 평가 : Part A. 정수장 내부 단락류 분석을 통한 장폭비와 형태가 T10/T 값에 미치는 영향 연구)

  • Shin, Eunher;Lee, Seungjae;Kim, Sunghoon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • Disinfection is a basic and effective microorganism inactivation method and historically contributed a decrease in waterborne diseases. To guarantee the disinfection ability, improving T in CT value is important. Many indexes are used to estimate the hydraulic efficiency, however, these are black-box analysis. Therefore it is need to develope new estimation method. In this study, internal short-circuiting estimation method (ISEM) is developed using CFD and we inquire into the factor which causes increase of $T_{10}/T$ value as LW ratio increases. And the effect of shape on the relation of LW ratio and $T_{10}/T$ is analyzed. As LW ratio increases, internal short-circuiting index (ISI) of influent and effluent zone is rapidly reduced and recirculation and dead zone are reduced in channel zone. Therefore, as the $T_{10}/T$ value converges maximum value, ISI curve is changed from "V" shape to "U" shape and hydraulic efficiency is improved especially in downstream portion of clearwell. The less the shape ratio(width/length of clearwell) is the less the $T_{10}/T$ value is at a same LW ratio because the portion of turning zone increases as shape ration decreases, therefore more boundary separation is generated.

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-52
    • /
    • 2006
  • Techniques used for thrust vector control in rocket motors are mainly classified nozzles installed mechanical interference on the expansive region of nozzle(such as jet tabs and jet vanes) and movable nozzles(such as ball&socket and flexible seal). Using the numerical analysis and cold-flow test, this paper evaluates the performance of supersonic nozzle with asymmetric entrance shape when the test nozzle, especially ball&socket, is tilted. Numerical result shows that the effect of the asymmetric entrance shape on the flow field is suddenly diminished at the nozzle throat and downstream is mostly free from the effect of asymmetric entrance shape. Although the calculated thrust and lateral force are less than those of cold-flow test, two results show a fairly good agreement. But the cold-flow test results indicate the effective angles calculated from measured forces are not agreement with the geometric angles.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Comparison of Edge Wave Normal Modes (Edge Wave 고유파형의 비교)

  • Seo, Seung Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.285-290
    • /
    • 2013
  • Both full linear and shallow water edge waves are compared to get a better understanding of edge wave behavior. By using method of separation of variables, we are able to get solution of full linear edge wave presented by Ursell (1952) without derivation. The shallow water edge waves show dispersive features despite being derived from shallow water equations. When bottom slope is mild enough, shallow water edge wave tends to linear edge wave and has some advantages of manipulation. Solution of edge wave generated by a moving landslide of Gaussian shape is constructed by an expansion of shallow water normal modes. Numerical results are presented and discussed on their main features.

Topological View of Viscous Flow behind Transom Stern (트랜섬 선미 후방의 점성 유동장 Topology 관찰)

  • Kim, Wu-Joan;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

Fiber Orientation distribution of Injection Molded Product on the Fiber-Reinforced Polymeric Composites (섬유강화 복합재료 사출성형품의 섬유배향상태)

  • Lee, J.J.;Kim, J.W.;Kim, H.;Han, G.Y.;Sim, J.K.;Lee, D.G.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.76-81
    • /
    • 2004
  • Injection molding is the most widely used process fir the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result. the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experientially. Using the image processing method, the fiber orientation distribution of welding pars in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied experimentally.

  • PDF

Urban Road Extraction from Aerial Photo by Linking Method

  • Yang, Sung-Chul;Han, Dong-Yeo;Kim, Min-Suk;Kim, Yong-Il
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.67-72
    • /
    • 2003
  • We have seen rapid changes in road systems and networks in urban areas due to fast urbanization and increased traffic demands. As a result, many researchers have put greater importance on extraction, correction and updating of information about road systems. Also, by using the various data on road systems and its condition, we can manage our road more efficiently and economically. Furthermore, such information can be used as input for digital map and GIS analysis. In this research, we used a high resolution aerial photo of the roads in Seongnam area. First, we applied the top-hat filter to the area of interest so that the road markings could be extracted in an efficient manner. The lane separation lines were selected, considering the shape similarity between the selected lane separation line and reference data. Next, we extracted the roads in the urban area using the aforementioned road marking. Using this technique, we could easily extract roads in urban area in semi-automatic way.

  • PDF

Fiber Orientation Distribution of Injection Molded Product on the Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료 사출성형품의 섬유배향상태)

  • Lee Dong-Gi;Sim Jea-Ki;Kim Jin-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • Injection molding is the most widely used process for the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of welding parts in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied experimentally.

A Parametric Study on Double-Slit-Type Rupture Disc of Pulse Separation Device (펄스분리장치의 이중 슬릿형 파열판 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.101-110
    • /
    • 2010
  • Dual pulse rocket motor is a solid motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis for the rupture disc was conducted by finite element method. The effect of the slit geometry of a rupture disc was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.