KSII Transactions on Internet and Information Systems (TIIS)
/
제16권7호
/
pp.2359-2376
/
2022
With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.
전통적인 영상 검색 방법은 영상의 색인화와 검색에서 기본적인 특징으로 컬러, 모양, 그리고 질감 들을 사용한다. 우리는 이러한 특징들을 사용하지 않는 새로운 방법을 제시한다. 내용 기반 영상의 색인화와 검색을 위한 유사성 측정에 기하학적 방법을 사용한 시각적 특징을 제시한다. 이 방법은 Radon 변형이라고 한다. 이 방법은 복잡한 분리 방법이 없이 영상의 기하학적 분포에 따라 계산한다. 실험에서도 매우 뛰어난 검색 효과를 보이고 있다.
멀티미디어 기술과 통신 기술의 발달로 다양한 멀티미디어 데이터를 쉽게 접할 수 있게 되었고 그 양도 급격하게 증가하고 있다. 이에 따라 3차원 모델을 검색하기 위한 시스템의 필요성이 부각되고 있으며 이를 위해서는 3차원 모델의 형태 정보를 효과적으로 기술하는 형태 기술자가 필요하다. 본 논문에서는 3차원 모델을 검색하기 위한 형태 기반 기술자를 추출하는 새로운 방법을 제안한다. 제안하는 형태 기반 기술자는 객체의 지역적인 특성을 나타내는 형태 인덱스와 곡면의 굽은 정도를 결합한 기술자이다. 형태 인덱스의 분포를 사용하는 기존의 3차원 형태 스펙트럼 기술자는 표면의 모양만 고려할 뿐 곡면의 굽은 정도는 고려하지 않는다. 그렇기 때문에 곡면의 굽은 정도가 다른 경우에도 그 특징값이 같을 수도 있다는 단점이 있다. 본 논문에서는 곡면의 굽은 정도를 나타낼 수 있는 특징값을 추가함으로써 이를 해결한다. 형태 인덱스와 곡면의 굽은 정도를 결합한 새로운 기술자는 매우 적은 특징 정보만을 추가함으로써 성능 향상 효과를 얻을 수 있다. 제안하는 방법을 기존의 방법과 비교하여 검색 성능을 평가한 결과 23.6%의 성능 향상을 보이고 있다.
With two-class-based storage assignment policy and dual command cycle in Automated Storage/Retrieval Systems(AS/RS), the problem of determining the region dedicated for class-one item is considered. First, the expected travel time of the S/R machine is derived when the boundary of the class-one region is square. Secondly, a heuristic procedure is proposed which determines sequentially the class-one region in a discrete rack. An application of the procedure generates leaf shape region which confirms that the L-shape partition is not necessarily optimal.
본 논문에서는 칼라 영상 검색을 위한 특징으로서 칼라 정보와 모양 정보를 고려하는 복합적인 특징벡터를 사용한 영상 검색 기법을 제안하였다. 비균둥 양자화 방법인 Lloyd-Max quantizer를 통한 효율적인 칼라 양자화를 하였고, 양자화를 거친 후 생성된 칼라 그룹간의 공간적 분포상황을 고려하기 위해 히스토그램 행렬을 도입함으로써 칼라 정보를 기반으로한 검색 효율을 증대시켰다. 또한 모양 정보를 획득하기 위해 향상된 불변 모멘트를 사용함으로써 연산량을 줄이면서, 검색 효율을 증대시켰다. 영상으로 200여개의 칼라 트레이드마크를 사용하여 기존의 방법들과의 비교실험을 통해 원영상 뿐만 아니라 변형된 영상에 대해서 보다 향상된 검색 결과를 얻을 수 있었다. 즉, 영상내의 물체의 회전, 이동, 잡음 첨가와 감마 보정값 등에 의해 변형된 영상에 대해서 보다 더 강한 결과를 얻을 수 있었다.
In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.
본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.
멀티미디어 기술과 콘텐츠의 발달로 3차원 데이터의 사용 범위가 넓어지고, 이를 보다 효율적으로 관리하고 검색하기 위한 시스템이 필요하다. 본 논문은 효율적인 3차원 모델의 형상 기반 검색을 하기위해 모델의 특징을 추출하는 단면 형상 영상 방법을 제안한다. 3차원 모델의 특징 기술자는 모델에 대한 위치, 회전, 크기에 불변해야 하므로 모델을 정규화 시키는 작업이 필요하다. 본 논문에서는 주성분 분석 방법을 이용하여 정규화하였다. 제안한 알고리즘은 주성분 분석을 통해 각 축의 방향 성분을 찾고, 각 축에 직교하는 n 개의 평면을 생성한다. 이 평면은 각 축의 방향과 직교 성분을 갖으며 단면 형상 영상을 구하는데 사용된다. 단면 형상 영상은 3차원 모델과 각 평면이 교차해서 생기는 2차원 평면 영상이다. 제안한 3차원 모델의 특징 기술자는 단면 형상 영상의 중심점과 2차원 형상(shape)을 이루는 직선까지의 유클리디안 거리(distance)값들의 분포도이다. 검색 성능 평가는 MPEG-7에서 제시한 표준 평가 방법인 표준화된 수정 검색 순위의 평균(ANMRR)을 이용하였고 제안한 방법의 우수성을 실험 결과를 통해 입증하였다.
본 논문에서는 영상 데이터 베이스의 색인화를 위해 영상의 색상과 객체가 갖는 복잡도를 이용한 내용기반 영상 검색 방법을 제시하였다. 일반적으로 색상 특징을 이용한 검색방법은 영상내 객체의 모양에 대한 공간 정보 특성을 고려하지 않으므로 검색 효율이 저하되었다. 본 논문에서는 기존의 방법인 색상특징과 제안한 체인코드에 의한 객체의 복잡도를 특징으로 하는 공간정보를 결합한 방법을 제안하였다. 실험결과 영상의 모양 특징도 고려한 제안한 방법이 내용기반 검색에서 색상 특징만을 고려한 기존의 방법보다 우수하였다.
Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.