• 제목/요약/키워드: Shape stabilized Phase change material

검색결과 10건 처리시간 0.025초

축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성 (Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials)

  • 김석환;정수광;임재한;김수민
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

형태안정성 PCM: 잠열저장을 위한 Polypropylene과 n-Eicosane으로 구성된 고화젤의 제조 및 특성 (Shape-Stabilized Phase Change Materials: Preparation and Properties of Frozen Gels from Polypropylene and n-Eicosane for Latent Heat Storage)

  • 손태원;임학상;김태훈;고재왕
    • 폴리머
    • /
    • 제34권3호
    • /
    • pp.261-268
    • /
    • 2010
  • 본 연구에서는 상전이 온도가 36 $^{\circ}C$인 n-eicosnae을 열가소성 폴리올레핀 고분자인 폴리프로필렌과 블렌드하였으며, 또한 최근의 형태안정성 PCM(SSPCM)의 연구검토를 통하여 폴리프로필렌과 n-eicosnae의 특성과 잠열저장체로서의 적용 가능성을 확인하였다. 상전이 온도가 36 $^{\circ}C$인 n-eicosane과 폴리프로필렌을 멜팅방법과 흡수방법을 이용하여 시료를 제조하였다. 제조된 형태안정성 PCM(SSPCM)을 DSC, WAXD, FTIR spectroscopy, ARES로 분석결과 형태안정성, 열용량의 향상을 확인하였다.

열 에너지 저장용 카프르산을 이용한 아몬드 껍질 바이오차 기반의 안정화 형태 상변이 물질의 성능 (Synthesis of Almond Shell Biochar-Based Shape-Stable Composite Phase Change Material Using Capric Acid for Thermal Energy Storage)

  • 잔낫;소우멘 만달;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.51-52
    • /
    • 2023
  • A new shape-stable composite phase change material (PCM) have been produced via an easy and simple vacuum impregnation method. The composite PCM have been derived from almond shell biochar (ASB) as supporting material and capric acid (CA) as phase change material. Cost effective waste almond shells (AS) are renewable, eco-friendly, and rich in pores which enhance the possibility of CA impregnation. Therefore, in this study, three different ratios of CA (1:1, 1:2 and 1:3) have been incorporated in ASB to produce shape-stabilized phase change composites (ASCAs). Different techniques such as scanning electron microscopy (SEM), Fourier transform-infrared spectroscope (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) have been applied to evaluate the characteristics of ASCAs. The attained composite PCMs have exhibited shape stability with high latent heat storage, that makes it suitable for thermal energy storage applications.

  • PDF

황마 바이오차를 사용한 에너지 저장용 상변화 물질의 제조 및 성능평가에 관한 연구 (A promising form-stable phase change material prepared using cost effective Jute stick Biochar as the matrix of stearic acid for thermal energy storage)

  • 잔낫;소우멘 만달;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.169-170
    • /
    • 2022
  • Due to the higher use of nonrenewable fossil fuel energy, environment friendly sustainable energy from waste materials is attracting attention of the researchers. Considering that, jute stick (JS) biochar has been considered for this study for ecofriendly and sustainable thermal energy storage application. Waste jute sticks (JS), which are being mainly used as a fuel for cooking purpose, have been pyrolyzed to produce porous biochar and have been used for shape stabilization of stearic acid (SA) as phase change material (PCM). SA at 1:1 ratio has been incorporated into the activated JS biochar to concoct shape-stabilized phase change composite (SAJS). The SAJS has been evaluated by different techniques such as Fourier transform-infrared spectroscope (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The obtained composite PCM has shown excellent shape stability with a high latent heat storage, suggesting its suitability for thermal energy storage applications.

  • PDF

축열 성능 향상 SSPCM 혼합 콘크리트 제조 및 열적특성 분석 (Preparation and Thermal-property Analysis of Heat Storage Concrete with SSPCM for Energy Saving in Buildings)

  • 정수광;장성진;임재한;김희선;류성룡;김수민
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.89-96
    • /
    • 2015
  • n-octadecnae based shape stabilized phase change material (SSPCM) was prepared by using vacuum impregnation method. And an exfoliated graphite nanoplate (xGnP) which has high thermal conductivity properties is used as a PCM container. And then we made heat storage concretes which contains SSPCM for reducing heating and cooling load in buildings. In the prepararion process, the SSPCM was mixed to a concrete as 10, 20 and 30wt% of cement weight. The thermal properties and chemical properties of heat storage concrete were analyzed from Scanning electron microscope (SEM), Fourier transformation infrared spectrophotometer (FT-IR), Deferential scanning calorimeter (DSC), Thermogravimetric analysis (TGA) and TCi thermal conductivity analyzer. And we conducted surface temperature analysis of SSPCM and xGnP by using heat plate and insulation mold.

건축물 축열성능 향상을 위한 Octadecane/xGnP SSPCM 제조 및 열적성능 분석 (Preparation and Thermal Properties of Octadecane/xGnP Shape-Stabilized Phase Change Materials to Improve the Heat Storage Performance of Buildings)

  • 김석환;정수광;이정훈;김수민
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, a shape-stabilized phase change material (SSPCM) was prepared by octadecane and exfoliated graphite nanoplate (xGnP) in a vacuum, to improve thermal storage performance. The octadecane as an organic phase change material (PCM) is very stable against phase separation of PCM, and has the proper temperature range for thermal comfort in the building; and the xGnP is a porous carbon nano-material. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR) were used to confirm the chemical and physical stability of the Ocatadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter (DSC), and Thermogravimetric analysis (TGA). The specific heat of Octadecane/xGnP SSPCM was $14.1J/g{\cdot}K$ at $31.3^{\circ}C$. The melting temperature ranges of melting and freezing were found to be $26{\sim}35^{\circ}C$ and $26{\sim}19^{\circ}C$, respectively. At this time, the latent heats of melting and freezing were 110.9 J/g and 104.5 J/g, respectively. The Octadecane was impregnated into xGnP by as much as about 56.0% of the Octadecane/xGnP SSPCM's mass fraction.

Shape-Stabilized Phase Change Materials : Frozen Gels From Polypropylene and n-Paraffin for Latent Heat Storage

  • Kim, Jong-Hwan;Ko, Jae-Wang;Son, Tae-Won
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2009년도 학술발표대회
    • /
    • pp.120-121
    • /
    • 2009
  • We prepared polymer-PCM gels such as prepared frozen gel from polypropylene and n-Paraffin for thermal storage and release materials, their basic properties and possible applications especially in latent heat storage. The preparation methods are used to melting method and absorption method respectively. The composition and properties of prepared frozen gels from polypropylene and n-Paraffin were observed by DSC, FT-IR spectra, ARES and Elemental analysis. We can prepare frozen gels in different temperature for latent heat storage materials as controlling composition of phase change material as well as using different incorporating phase change materials. These frozen gels can be used to latent heat storage materials for several applications.

  • PDF

Shape-Stabilized Phase Change Materials : Frozen Gels From Polypropylene and n-Paraffin for Latent Heat Storage

  • Ko, Jae-Wang;Son, Tae-Won
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2010년도 제3회 국제학회
    • /
    • pp.80-81
    • /
    • 2010
  • We prepared polymer-PCM gels such as prepared frozen gel from polypropylene and n-Paraffin for thermal storage and release materials, their basic properties and possible applications especially in latent heat storage. The preparation methods are used to melting method and absorption method respectively. The composition and properties of prepared frozen gels from polypropylene and n-Paraffin were observed by DSC, FT-IR spectra, ARES and Elemental analysis. We can prepare frozen gels in different temperature for latent heat storage materials as controlling composition of phase change material as well as using different incorporating phase change materials. These frozen gels can be used to latent heat storage materials for several applications.

  • PDF

SSPCM 혼입 콘크리트의 역학적 성능 기반 배합설계기법 연구 (Investigation of Mix Design Method in Concrete Mixed with SSPCM Based on Mechanical Behaviors)

  • 민해원;김희선
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2015
  • As energy consumption of building and the reduction of carbon dioxide emissions have been emphasized, phase change materials(PCM) have been introduced as building materials due to its high heat storage performance. Using shape-stabilizing technique, octadecane/xGnP shape-stabilized PCM(SSPCM) can prevent leakage and improve heat storage performance. The objectives of this study are to propose mix design method of concrete mixed with SSPCM and to evaluate mechanical behaviors of the concrete mixed with SSPCM manufactured according to the proposed mix design. Based on the previously reported material test result, the existing mix design of plain concrete(Concrete standard specification, 2009) is modified to consider reduction of strength in concrete due to the addition of SSPCM. To verify the proposed mix design, specimens are fabricated according to the proposed mix design and axial strength tests and three-point loading tests are performed. Test results show that compressive strengths of the tested specimens reach the designed strength even when two different mix ratios of SSPCM are used. From three-point loading tests, flexural stresses decrease as mix ratio of SSPCM increases.

건축적용을 위한 다공성 물질을 이용한 상안정 PCM 제조 (Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings)

  • 정수광;유슬기;장슬애;박진성;김태현;이정훈;김수민
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.432-437
    • /
    • 2013
  • The increase of greenhouse gas emission and decrease of fossil fuel are being caused by the indiscreet consumption of energy by people. Recently, green policy has been globally implemented to reduce energy consumption. This paper studied the research to reduce the energy consumption in buildings, by using the heat storage properties of PCM. PCM has to prevent leakage from the liquid state. Therefore, we prepared form stable PCM, by using the vacuum impregnation method. Three kinds of organic PCMs were impregnated into the structure of porous material. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysis.