• Title/Summary/Keyword: Shape of Diffusion

Search Result 296, Processing Time 0.029 seconds

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

Analysis on Impacts of Renewable Energy Promotion on Mitigation of Air Pollution (신재생에너지의 확산이 대기오염 배출 저감에 미치는 영향 분석)

  • Bae, Jeong Hwan;Jung, Seo Rim
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.13-26
    • /
    • 2020
  • This study analyzed whether the diffusion of new and renewable energy contributed to mitigating emissions of various air pollutants, including particulate matter, using panel econometric models. The theoretical foundation of such econometric models is based on the Environmental Kuznets Curve (EKC) hypothesis, which assumes an inverted U-shaped relation between national income and environmental pollution, as originally proposed by Grossman and Krueger. We examined whether there are inverted U-, U-shaped, or N-shaped relations between national income and air pollution. We demonstrate that increases in new and renewable energy significantly mitigated emissions of CO, NOX, and PM2.5. Additionally, we included NOX, SOX, PM10, and VOCs as secondary emission sources of PM2.5 and found that emission of PM10 resulted in the highest PM2.5 emissions, followed by NOX and SOX emissions. The impact of new and renewable energy on air pollution varied across regions. Increase of new and renewable energy in the Honam region significantly mitigated CO, NOX, and TSP emissions, while that in the Youngnam and metropolitan areas did not significantly mitigate air pollution overall. There was a U-shaped relationship between air pollution and national income for CO, NOX, PM2.5, and SOX, while an inverted N-shape was observed for PM10.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

Synthesis of $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ Powder by Ultrasonic Spray Pyrolysis (초음파 분무열분해를 이용한 $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ 분말의 합성)

  • 박양수;심수만
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1171-1181
    • /
    • 1998
  • $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ powder was synthesized by ultrasonic spray pyrolysis using a solution that Sr carbonate and Zr and Y nitrates were dissolved in a citric acid solution. The processes of particle formation were in-vestigated with respect to solution properties and pyrolysis temperature. With changing the solution con-centration form 0.1M to 0.01M there was a tendency that average sizes of droplets and particles were de-creased and their size distributions were narrowed. Citrate functional groups converted the droplets into gel particles which prevented an inhomogeneous precipitation of the metal ions and facilitated the diffusion of gases during thermal decomposition. As a result the powder having spherical particles without hollow par-ticles could be prepared. Low pyrolysis temperature led to amorphous particles due to incomplete pyrolysis and made the particles difficult to maintain spherical shape due to retarded gelation of the droplets. Whereas higher pyrolysis temperature produced hollow and broken particles because the droplets un-derwent rapid gelationand decomposition. The particles obtained at two pyrolysis temperature $500^{\circ}$and $1000^{\circ}C$ consisted of a perovskite phase and a very small amount of $SrCO_3$ However after calcination at $1000^{\circ}C$ the particles contained a single perovskite phase having an average particle size of 0.63${\mu}{\textrm}{m}$ and an apparent density near to the theoretical density.

  • PDF

A Study on Nozzle Performance Influence with Aft-deck Geometry (Aft-deck 형상에 의한 노즐 성능 영향성 연구)

  • Lee, Changwook;Park, Youngseok;Jin, Juneyub;Kim, Jaewon;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.42-54
    • /
    • 2021
  • The Aft-deck is being applied to the latest unmanned aircraft for the purpose of shielding the gas turbine exhaust plume or spreading jets to increase the mixing rate with the ambient air, thereby reducing the temperature of exhaust gases. In this study, we would like to find out how the performance of the nozzle is affected by the design variables of the Aft-deck. The design variables of aft-deck are selected as length, expansion angle and upper deck shape. The correlation between thrust and plume shielding rate with the length variable is presented. And the correlation between the thrust and the jet diffusion range is presented according to the expansion angle. In addition, the thrust increase effect is confirmed by the removal of the upper deck and the characteristics of transverse velocity vector determined mixing performance with external flow.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Two New PVY Strains Isolated from Tobacco Plant in Korea (한국 잎담배에서 분리된 PVY계통)

  • Park E. K.;Kim J. J.;Boo K. S.
    • Korean journal of applied entomology
    • /
    • v.23 no.4 s.61
    • /
    • pp.209-214
    • /
    • 1984
  • Since 1980, burley tobacco plants grown mainly in the western hat of the Korea. have shown two new types of disease symptom. Both symptoms were found to be caused by two different PVY strains : the vein banding type by a PVY strain designated as PVY-VB and necrosis on leaf veins by a PVY strain designated as PVY-VN, Identification of the PVY strains was based on host range test. aphid( Myzus Persicae) transmission test, physical properties, serology, and observation of virus particle morphology. The virus particles were measured to be about 730 nm without any difference in shape or dimensions between the two strains. Both strains also gave a positive reaction to the PVY antiserum in SDS-agar gel double diffusion test. These strains, however, gave a negative reaction to the tobacco etch virus and tobacco vein mottling virus antisera.

  • PDF

Reaction between Calcium-doped Lanthanum Chromite and Yttria Stabilized Zirconia (칼슘이 첨가된 란탄-아크롬산 염과 이트리아 안정화 지르코니아 계면간의 반응)

  • Choe, Jin-Sam
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.460-464
    • /
    • 2001
  • The ceramic diffusion coupling with the green body of calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$CLC- G) and sintered calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$ CLC) by Pechini's method on yttria stabilized zirconia(YSZ) plate has been investigated. The X-ray diffraction pattern of CLC sides at the reacted CLC-G/ CLC and CLC/YSZ interface were identified as La$_{1-x}$ Ca$_{x}$CrO$_3$ and the unreacted YSZ side was cubic-ZrO$_2$ at the treated condition, 1300~1500 C for 10 hr in air, respectively. The order of migration components between CLC/YSZ interface was Zr>La>>Cr>>>Ca and these changes were not dependent upon the treated conditions. The grain shape and size at the interface of CLC-G/CLC was appeared to have a uniform distribution with increasing temperature. The bonding reaction of YSZ/CLC was occurred without a large amount change of the compositions in SEM photos.os.otos.os.

  • PDF