• Title/Summary/Keyword: Shape modify

Search Result 120, Processing Time 0.027 seconds

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 2. 확률적 후보 선택을 통한 실시간 프레임워크의 설계 및 구현)

  • Lee, Yeongjun;Kim, Tae Gyun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.164-173
    • /
    • 2014
  • In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.

The Study on the Weight, Food Group Intake and Tendency of Eating Disorder of Adolescents in Osan GyeongGi Province (경기 오산지역 중.고등학생의 체중과 식품섭취 및 섭식장애 경향 조사)

  • Rhie, Seung-Gyo;Jung, Eun-Hee;Won, Hyang-Rye;Kang, Heui-Yun
    • The Korean Journal of Community Living Science
    • /
    • v.20 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • This study was carried out to investigate the effect of eating behavior, physical status and tendency of eating disorder on the right eating habit. The subjects of this study were 324 middle school students and 340 high school students in Osan city GyeongGi province. The average of weight and height in the middle and high school students were 48.7kg, 160.0cm and 56.8kg, 164.8cm respectively. In PIBW values, 92.9% of middle school students and 99.1% of high school students were almost close to the average. The 28.5% of high school and 21.5% of middle school students were aware of themselves as overweight. The risk of eating disorders in high school students(16.4%) were higher than that in middle school students(4.9%). Moreover, the risk of eating disorders in girls high school students(19.3%) was significantly higher than those of middle school students(5.2%) (p<0.001). The thought of food problems were realized in 57.4% of in high school students and in 39.9% of in middle school students. The intake of food group frequency, middle school students ate more fruit than high school students(p<0.01). Boys ate more frequently soy beans (p<0.05) and algae(p<0.1) than girls in high school students. The meat intake was more frequent in high school students, but the eggs and milk were more in middle school students. The boys' intakes of fish and milk were more often than the girls' in high school students. Eating disorders and food intake frequency scores were closely correlated with weights(PIBW and the gap of ideal. weight with real weight). In conclusion, the education about realizing exact healthy body shape and how to modify behavior to prevent eating disorders should be planned since junior high school. Especially in high school girls, the variety food intake education would be needed. Proper recognition of the weight is required for good food intake and for prevent eating disorders.

  • PDF

AUTOMATIC CABBAGE FEEDING, PILING, AND UNLOADING SYSTEM FOR TRACTOR IMPLEMENTED CHINESE CABBAGE HARVESTER

  • Song, K.S.;Hwang, H.;Hong, J.T.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.489-497
    • /
    • 2000
  • Since Chinese cabbages weigh 3 to 5kgf and are big in size at the time of harvest, handling operations such as harvesting, loading and unloading including transportation require the highest labor demand among all other cultivation processes. Recently, though several cabbage harvesters were developed in Japan and Europe, those harvesters were not suitable for Chinese cabbages cultivated in Korea because of the size and shape. The cabbage harvester is almost meaningless without any proper cabbage piling and pallet unloading mechanism. Most harvesters developed so far adopted a sort of slide and free falling way in collecting cabbages into the pallet. Three or four labors are usually required for cleaning incoming cabbages and loading those in the pallet. Because of the required time for piling cabbages without severe damage and the required space capacity to carry empty and loaded pallets, harvesting speed should be adjusted in accordance with time required for consecutive operations. Up to now, any automatic or semi-automatic collecting device has not been developed in the world to pile cabbages on the layer one by one into the pallet in the ordered way with little damage and to unload pallet from the harvester continuously during the harvest process. To compromise system expenses and function, Semi-automatic cabbage piling and pallet unloading mechanism was devised and it required one labor. The foldable mesh pallet with a size of 1050mm x 1050mm x 1000mm and holding capacity of around 70 cabbages was utilized. The prototype for piling and unloading mechanism was composed of three parts such as feeding device, automatic piling device with retractable bellows, and pallet unloading device. Prior to developing the prototype, the geometric properties and the amount of the damage of the cabbage caused during the piling operation were investigated. Considering the height of the pallet, a series of cabbage carrying plates were mounted to the bracket chain to lift and to carry cabbages to the loading device. Indoor laboratory experiments showed that the cabbage carrying chain conveyor worked successfully. Considering the conveying speed 0.46m/sec of the pull up belt from the cabbages on the ground, the speed of cabbage carrying chain conveyor worked property in the range of 0.26m/sec to 0.36m/sec. The system allowed the operator to modify the position of cabbage slightly. Overall system worked successfully resulting into almost same capacity without severe damage to the cabbage as human did.

  • PDF

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Georadar System Using Network-Analyzer (네트웍 분석기를 이용한 레이다탐사 시스템의 구현)

  • Cho Seong-Jun;Kim Jung-Ho;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.272-279
    • /
    • 2002
  • During field survey of ground penetrating radar or borehole radar, we often encounter some problems which could be solved easily by modifying structure of the system such as antenna length, shape or array. In addition, it is necessary that the user could easily modify configuration of the radar system na test various array of antennas in order to verify and confirm numerical modeling results concerning radar antennas. We have developed network-analyzer-based, stepped-frequency georadar system. This system had been comprised with coaxial cable to confirm possibility of the system, then we have upgraded the system to use optical cable that is composed of optical/electric transducers, electric/optical transducers, amp, pre-amp and antennas. The software for the aquisition of data has been developed to control the system automatically using PC with GPIB communication and to display the obtained data graphically. We have tested the system in field survey na the results have been compared with those of RAMAC/GPR system.

Numerical simulation of the aerodynamic characteristics on the grid-fin adapted sub-munition with low aspect ratio under transonic condition (그리드핀을 적용한 작은 세장비를 갖는 자탄의 천음속 공력특성 전산해석)

  • Yoo, Jae-Hun;Kim, Chang Kee;Choi, Yoon Jeong;Lim, Ye Seul
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.23-33
    • /
    • 2019
  • A sub-munition which has low aspect ratio does not have flight stability and control of drag force under free-fall condition. In order to satisfy those problems, fin, which is called grid-fin, is designed instead of conventional flight fins and adapted to the sub-munition. The base model of the sub-munition is firstly set and numerical simulation of the model is conducted under transonic condition that is free-fall range of the sub-munition. Wind test is secondly performed to verify the simulation result. The result shows that grid fin adapted sub-munition has high drag force, but the flight stability is still needed. In order to enhance the flight stability, two additional grid-fins are designed which modify web-thickness and numerical simulations of modified models are conducted. As the results, the thinnest web-thickness grid-fin has the highest flight stability and still maintains high drag coefficient. Based on these results, design of grid-fin adapted sub-munition is completed, the path trajectory of the sub-munition can be predicted with acquired aerodynamic datum and it is expected that grid fin can be used to various shape of the flight vehicle and bomb.

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Chemical Modification of Silk by Ethylene Cyanohydrin (에틸렌 시아노히드린에 의한 실크의 화학적 개질)

  • Lee, Geun-Souk;Bae, Do-Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.26
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, when the silk fabric was modified by ethylene cyanohydrine, the reaction mechanism between both was studied at various treatment conditions such as curing temperatures and times, ethylene cyanohydrin concentrations and $ZnCl_2$ concentrations. Through the FT-IR and DSC analyses of the treated silk fabrics, we found the results as follows : It was observed in FT-IR analysis of the treated silk fabrics that the -OH characteristic peak($3,450cm^{-1}$)position and shape were all changed when drying and curing treatment conditions were at $80^{\circ}C$ for 3 minute and $110^{\circ}C$ for 2.5 minute, and the concentration of the $ZnCl_2$ was 0.1%. It indicated that the -OH group of the silk participated in the reaction between the silk fabric and ethylene cyanohydrin. From the DSC analysis, it was found that the pyrolysis temperatures of the treated silk fabrics by ethylene cyanohydrin which was processed in the same condition, were all increased from $311^{\circ}C$ to ab. $320^{\circ}C$. From the FT-IR analyses of the silk fabrics treated by ethylene cyanohydrin at the various concentrations of $ZnCl_2$, it was found that the -OH characteristic peaks($3,450cm^{-1}$) were similar to the nontreated one except that of the fabric treated at the $ZnCl_2$ conconcentration of 0.8% when drying and curing treatment conditions were at $80^{\circ}C$ for 3minute and $110^{\circ}C$ for 2.5 minute, and the concentration of the ethylene cyanohydrin was 5%. In the case of the $ZnCl_2$ concentration of 0.8% solution, a lot of change were observed in peak. From the DSC analysis of the treated silk fabrics which was processed in the same condition, it was showed that the pyrolysis temperatures of treated silk fabric were all increased from $311^{\circ}C$ to ab. $320^{\circ}C$, which was no relation with the concentration of $ZnCl_2$.

  • PDF

Cellular activities of osteoblast-like cells on alkali-treated titanium surface (알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도)

  • Park, Jin-Woo;Lee, Deog-Hye;Yeo, Shin-Il;Park, Kwang-Bum;Choi, Seok-Kyu;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.427-445
    • /
    • 2007
  • To improve osseointegration at the boneto-implant interface, several studies have been carried out to modify titanium surface. Variations in surface texture or microtopography may affect the cellular response to an implant. Osteoblast-like cells attach more readily to a rougher titanium surface, and synthesis of extracellular matrix and subsequent mineralization were found to be enhanced on rough or porous coated titanium. However, regarding the effect of roughened surface by physical and mechanical methods, most studies carried out on the reactions of cells to micrometric topography, little work has been performed on the reaction of cells to nanotopography. The purpose of this study was to examme the response of osteoblast-like cell cultured on blasted surfaces and alkali treated surfaces, and to evaluate the influence of surface texture or submicro-scaled surface topography on the cell attachment, cell proliferation and the gene expression of osteoblastic phenotype using ROS 17/2.8 cell lines. In scanning electron micrographs, the blasted, alkali treated and machined surfaces demonstrated microscopic differences in the surface topography. The specimens of alkali treatment had a submicro-scaled porous sur-face with pore size about 200 nm. The blasted surfaces showed irregularities in morphology with small(<10 ${\mu}m$) depression and indentation among flatter-appearing areas of various sizes. Based on profilometry, the blasted surfaces was significantly rougher than the machined and the alkali treated surfaces (p$TiO_2$) were observed on alkali treated surfaces, whereas not observed on machined and blasted surfaces. The attachment morphology of cells according to time was observed by the scanning electron microscope. After 1 hour incubation, the cells were in the process of adhesion and spreading on the prepared surfaces. After 3 hours, the cells on all prepared surfaces were further spreaded and flattened, however on the blasted and alkali treated surfaces, the cells exhibited slightly irregular shapes and some gaps or spaces were seen. After 24 hours incubation, most cells of the all groups had a flattened and polygonal shape, but the cells were more spreaded on the machined surfaces than the blasted and alkali treated surfaces. The MTT assay indicated the increase on machined, alkali treated and blasted surfaces according to time, and the alkali treated and blasted surfaces showed significantly increased in optical density comparing with machined surfaces at 1 day (p<0.01). Gene expression study showed that mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin of the osteoblast-like cells showed a tendency to be higher on blasted and alkali treated surfaces than on the machined surfaces, although no siginificant difference in the mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin was observed among all groups. In conclusion, we suggest that submicroscaled surfaces on osteoblast-like cell response do not over-ride the one of the surface with micro-scaled topography produced by blasting method, although the microscaled and submicro-scaled surfaces can accelerate osteogenic cell attachment and function compared with the machined surfaces.