• 제목/요약/키워드: Shape design sensitivity

검색결과 309건 처리시간 0.026초

조수석 에어백 성능 개선을 위한 형상 설계연구 (A Study on Shape Design of the Passenger Airbag for Efficiency Improvement)

  • 양성훈;임종현;김승기;채수원
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.

선택적 주의 관점에서 본 조명에 의한 주의 자원과 공간 기억의 변화 (The Change of 'Attention Resources' and 'Space-Memory' by Lighting focusing on 'Selective Attention)

  • 서지은
    • 한국실내디자인학회논문집
    • /
    • 제25권2호
    • /
    • pp.41-49
    • /
    • 2016
  • The purpose of this study is to analyze the change and to compare to the difference of 'selective elements' and 'space-memory' focusing on the theory, 'selective attention' through the survey results. In this study, In this study, the lighting is considered a important factor in the change of 'selective elements'. this survey is to find the selective elements of participants and to measure the spatial sensitivity of respondents through 'self- test'. The analysis in this study is conducted by descriptive statistics, t-test and one way ANOVA by SPSS program 22. The results of this study are as following; Firstly, 'attention-element' could be classified with 4 types, 'shape', 'material', 'contrast' and 'combination'. 'shape' could divide into 'structure' and' furniture and object'. In case of 'material', it could section with 'pattern' and 'color'. Secondly, through the results of study, 'attention-element' is different each space during the day in detail. But we could know that 'shape' is the important element of the 'attention-elements' during the day through comparison of this result. That means users consider this as a important factor when they evaluate the space. Therefore, it is effective way designers to consider 'shape' as the first element when they want to conduct the special sensitivity of users in the space through planning. On the other hand, what selective elements of users are different by the lighting situation should be acknowledged by designers. And they should think the kinds of selective elements are more various when lighting turns on than turns off.. Thirdly, through the results such as the meaningful difference of space-memory of users according to the change of 'attention-elements', designers should judge about which kind of feeling of users to the space do you want lead in the design process. For the effective feedback between spaces and users to induce the same emotion of users, designers need to consider the unified design and the individual design both. Also, we will regard the differences in the users' emotion to the space according to the lighting situation when we design the space.

균열진전 문제의 X-FEM 기반 형상 설계민감도 해석 (X-FEM Based Shape Design Sensitivity Analysis of Crack Propagation Problems)

  • 문민영;안승호;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.697-700
    • /
    • 2011
  • 본 논문에서는 X-FEM을 사용하여 혼합모드 하중 상태에서의 이차원 선형탄성체의 균열문제에 대한 형상 설계민감도 해석을 수행하였다. X-FEM이란 균열과 같은 특수한 해를 근사하는 방법으로써, 확장함수를 도입하여 FEM의 한계를 극복하는 방법론이다. X-FEM 하에서 해를 근사하는 데 쓰이는 확장함수들은 불연속성과 특이성을 포함하고 있어 물리적 영역에 의존한다. 이는 설계민감도 해석을 수행하는 과정에서 그러한 의존성을 고려해주는 것이 필요하다. 따라서 본 논문에서는 X-FEM 기반의 형상 설계민감도 해석해를 제안하고자 한다. 식의 유도는 전 미분 공식에 기초하고 있으며, 형상함수의 설계변분에 대한 의존성에 관한 항을 추가시켰다. 또한, 균열 주위의 국부적인 공간에서의 확장된 자유도에 설계속도를 가한다. 이에 대한 몇 가지 수치 예제를 통하여 개발된 방법론의 타당성을 확인하였다.

  • PDF

광디스크 드라이브 공기베어링 슬라이더의 최적설계를 위한 형상민감도 해석 (Shape Sensitivity Analysis for the Optimal Design of Air Bearing Sliders of Optical Disk Drives)

  • 김현기;장혁;김광선;임경화;정태건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.742-747
    • /
    • 2000
  • The optical storage device has recently experienced significant improvements, especially for the aspects of high capacity and fast transfer rate. However, it is the fact that the optical storage device has the lower access time for the randomly scattered data compared to the hard disk drives. It is, therefore, necessary to develop a new type of optical storage system. In this study, we investigate the air bearing characteristics for the optical disk drives which have the swing arm actuator similarly to the hard disk drives. Considering the requirements of the optical disk drives, we parametrize the shape of the air bearing surface and investigate its sensitivity to the flying characteristics for further optimized design outputs.

  • PDF

A two-step method for the optimum design of trusses with commercially available sections

  • Oral, Suha;Uz, Atilla
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.59-68
    • /
    • 1997
  • A two-step method is presented for the optimum design of trusses with available sections under stress and Euler buckling constraints. The shape design of the truss is used as a means to convert the discrete solution into a continuous one. In the first step of the method, a continuous solution is obtained by sizing and shape design using an approximate polynomial expression for the buckling coefficients. In the second step, the member sizes obtained are changed to the nearest available sections and the truss is reconfigured by using the exact values for the buckling coefficients. The optimizer used is based on the sequential quadratic programming and the gradients are evaluated in closed form. The method is illustrated by two numerical examples.

유한요소해석과 B-스플라인 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계 (Shape Optimization of Shell Surfaces Based on Linkage Framework between B-spline Modeling and Finite Element Analysis)

  • 김현철;노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.169-176
    • /
    • 2003
  • In the present study, a shape design optimization scheme in shell structures is implemented based on the integrated framework of geometric modeling and analysis. The common representation of B-spline surface patch is used for geometric modeling. A geometrically-exact shell finite element is implemented. Control points or the surface are employed as design variables. In the computation of shape sensitivity, semi-analytical method is employed. Sequential linear programming is applied to the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool to design and analysis of surfaces.

  • PDF

단순유한요소모델을 이용한 차체필라 형상최적설계 (Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model)

  • 이상범
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

강체모드분리와 급수전개를 통한 고유치 문제에서의 준해석적 설계 민감도 개선에 관한 연구(II) -동적 문제 - (A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion in Eigenvalue Problem(II) - Eigenvalue Problem -)

  • 김현기;조맹효
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.593-600
    • /
    • 2003
  • Structural optimization often requires the evaluation of design sensitivities. The Semi Analytic Method(SAM) fur computing sensitivity is popular in shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements. the SAM shows severe inaccuracy. In this study, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover. the error of the SAM caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms. Finally the present study shows that the refined SAM including the iterative method improves the results of sensitivity analysis in dynamic problems.

고감도 3축구동 액츄에이터를 위한 Rolling Mode 저감 연구 (A Study on Reducing Rolling Mode Effect in High-Sensitivity Optical Pickup 3-axis Actuator)

  • 김영중;홍삼열;김진아;최인호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.775-779
    • /
    • 2003
  • Recently, a new type actuator using multi-pole magnet has been developed for high-density and high-speed disk drive, which can be achieved higher sensitivity than a conventional actuator for applying one-pole magnet. However, it is very difficult for the actuator of multi-pole magnet to meet simultaneously the optimal design condition for reducing rolling mode effect and improving driving sensitivity because the force center is different from the mass center In this paper, First We propose the new shape coil for tracking which can reverse moment additionally in tracking motion, Next we achieve the optimal design to reduce phase disturbance and peak gain at the rolling mode frequency. Finally, the validity of the proposed methods is proved from experimental results.

  • PDF

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.