• Title/Summary/Keyword: Shape Treatment

Search Result 1,568, Processing Time 0.024 seconds

Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting (진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성)

  • Park, Gwang-Hun;Park, Seong-Gi;Sin, Sun-Gi;Park, Yeong-Cheol;Lee, Gyu-Chang;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

Behavior of Diffusion Layer Formation for TiNi/6061Al Smart Composites by Vacuum hot Press (진공 Hot Press법에 의한 TiNi/6061Al 지적 복합재료의 확산층 형성거동)

  • Park, Kwang-Hoon;Park, Sung-Ki;Shin, Soon-Gi;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.955-961
    • /
    • 2002
  • 2.7vol%TiNi/6061 Al composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum hot press. It was investigated by OM, SEM, EPMA and XRD analysis for the behavior of diffusion layer formation on various heat treatment condition. Thickness of diffusion layer was increased proportionally according to heat treatment time. The layer was formed by the mutual diffusion of TiNi and Al. The diffusion rate from TiNi fiber to Al matrix was faster than that of reverse diffusion path. The more diffused layer was formed in Al matrix. The diffusion at interface layer was consisted of $A1_3$Ti, $Al_3$Ni analyzed by EPMA, XRD results.

THERMOMECHANICAL STUDY OF LASER TREATED NiTi DENTAL ARCH WIRE

  • Kim, Young-Kon;Park, Joon-B.;Lakes, R.S.;Andreasen, G.F.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.9-12
    • /
    • 1989
  • A preliminary study has been conducted to demonstrate the effect of laser heat treatment on Ni Ti alloy dental arch wires ($0.016"\;{\times}\;0.022"$ and $0.018"\;{\times}\;0.026"$, rectangular shape). Changes in mechanical and thermal properties and surface morphologies are investigated by using optical and scanning electron microscope (SEM), energy dispersive x-ray microprobe analysis(EDX), differential scanning calorimeter (DSC), and micro hardness tester. The results indicate that the laser can affect the thermal equilibrium state of the localized surface. Titanium rich surface film is formed by the laser treatment. The surface film and rapidly resolidified underlying structures show better chemical resistance than the matrix material. Phase transition temperatures which are related to shape recovery temperatures are changed after laser treatment. Hardness of resolidified area and heat affected zone are lower than before treatment.

  • PDF

Orthodontic treatment and management of adult patient with cleft lip and palate (성인 구순구개열환자의 교정치료 및 관리)

  • Kim, Seong Sik
    • The Journal of the Korean dental association
    • /
    • v.53 no.7
    • /
    • pp.457-467
    • /
    • 2015
  • Patients with cleft lip and palate require interdisciplinary treatment to achieve successful rehabilitation. However, there are special difficulties in orthodontic treatment of adult cleft lip and palate patients: 1. Lack of Tissue, Bone, and Soft tissue; 2. Heavy Scar Tissue, Vestibule, and Palate; 3. Severe Anteroposterior discrepancy and Impaired Maxilla; 4. Distortion of Alveolar Ridge; 5. Abnormal Eruption Path and Malalignment of Tooth. Solving these problems, orthodontist should have differential diagnosis on extent of cleft site and residual deformities of adult cleft lip and palate patient. The tooth missing area in cleft site was commonly treated with a removable or fixed prosthesis, but this method is not stable to retain maxillary arch shape. To establish the more stable arch shape in cleft lip and palate, endosseous implants in the alveolar clefts with bone graft is helpful for management of adult cleft lip and palate patient.

A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears (침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구)

  • LYU, Sung-Ki;JEON, Hyung-Ju;Moon, Bong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.61-67
    • /
    • 1997
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs comparaed to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

Effect of Grain Size and Predeformation on Shape Memory Ability and Transformation Temperature in Iron Base Fe-Mn-Si System Shape Memory Alloy (다결정질 Fe-Mn-Si계 형상기억합금의 형상기억합금과 변태점에 미치는 결정입도와 이전가공의 영향)

  • Choi, Chong Sool;Kim, Hyun Woo;Jin, Won;Shon, In Jin;Baek, Seung Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 1990
  • Effects of grain size and cold rolling degree on shape memory ability and transformation temperature were studied in Fe-35% Mn-6% Si shape memory alloy. Md point of the alloy was determined by variation of yield stress with test temperature. The Md point measured in this way was linearly increased with increasing grain size. Shape memory ability of the alloy was decreased with increasing grain size, showing a minimum value at around $63{\mu}m$, and then increased with increasing grain size. From this result, it was concluded that the shape memory ability in the grain size smaller than a critical value is controlled by amount of retained ${\gamma}$ and prior ${\varepsilon}$ phase, but that the shape memory ability in the grain size greater than the critical value is mainly dominated by grain boundary area in unit volume of parent phase. The shape memory ability was decreased with increasing deformation degree. This was because the ${\gamma}$ content being available for the formation of ${\varepsilon}$ martensite during bending was decreased with increasing deformation degree.

  • PDF

Characteristics of Tensile Deformation and Shape Recovery with Transformation Temperature Change in a Ni-Ti Alloy Wire (Ni-Ti계 합금 선재의 변태온도 변화에 따른 인장변형 및 회복 특성)

  • Choi, Y.G.;Kim, M.S.;Cho, W.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.307-313
    • /
    • 2008
  • The tensile deformation and shape recovery behaviors were studied in Ni-Ti shape memory wires showing different transformation characteristics by annealing at $200{\sim}600^{\circ}C$. Both R phase ${\rightarrow}$ B19' martensitic transformation at lower temperature and B2 ${\rightarrow}$ R phase transformation at higher temperature occurred in the shape memory wires annealed at $200{\sim}500^{\circ}C$. Transformation temperature and heat flow of B19' martensite increase but those of R phase main almost constant even with increasing annealing temperature. In the case of wires annealed and then cooled to $20^{\circ}C$, plateau on stress-strain curves in tensile testing can be observed due to the collapse of R phase variants and the formation of deformation-induced B19' martensite. In the case of wires annealed and then cooled to $-196^{\circ}C$, however, plateau on stress-strain curves does not appear and stress increases steadily with increasing tensile deformation. Comparing shape recovery rate with cooling temperature after annealing, shape recovery rate of the wire cooled to $20^{\circ}C$ is higher than that of the wire cooled to $-196^{\circ}C$ after annealing, and maximum shape recovery rate of 95% appears in the wire annealed at $400^{\circ}C$ and then cooled to $20^{\circ}C$. $R_s$ and $R_f$ temperatures measured during shape recovery tests are higher than $A_s$ and $A_f$ temperatures measured by DSC tests even at the same annealing temperature.

Effect of Heat Treatment on the Mechanical Properties of Carbon Fiber (탄소섬유의 기계적 특성에 대한 열처리의 영향)

  • Kim, Bu-An;Moon, Chang-Kwon;Choi, Young-Min
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.13-19
    • /
    • 2017
  • The effect of heat treatment temperature (HTT) on the mechanical properties of polyacrylonitrile (PAN)-based carbon fiber had been investigated. The heat treatment on the carbon fiber was conducted under high vacuum atmosphere of $10^{-6}mmHg$, and the range of temperature of $1,000^{\circ}C$ to $2,000^{\circ}C$. As a results, The tensile strength of carbon fiber and carbon fiber composites showed increasing tendency with the rise of heat treatment temperature. And, the shape parameter of Weibull distribution for the strength of carbon single fiber showed an increasing trend until $1,800^{\circ}C$. But the shape parameter of Weibull distribution for the strength of carbon fiber composites showed no clear tendency with the rise of heat treatment temperature. The cause of reinforcement effect of the carbon fiber by the heat treatment was regarded as the carbonization of carbon single fiber.