• Title/Summary/Keyword: Shape Search

Search Result 422, Processing Time 0.025 seconds

Robust Similarity Retrieval for Radial Distortion of Object Shape Based on the Normalized Phase Angles and Moment

  • An, Young Eun;Kim, Tae Yeun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • In the content-based image search properties, form information is simple because only the contours of objects are available, and although it can effectively extract the characteristics of the objects, it is sensitive to external noise. The radial distortion, one of these noises, is most prominent in the eyewear and, due to the structural characteristics of the imaging equipment, radiative distortion occurs in almost all imaging equipment. It is very important to determine the similarity of the objects in the images in which these distortions occurred to the actual objects. In order to improve this problem, we propose a strong image search technique for formative noise and radiative distortion using regularization phase angles and moments. Through simulation using Wang DB, the proposed algorithm proved excellent performance for radiation distortion that occurs in general. In addition, a system optimized for database can be implemented by making appropriate changes to the threshold values, enabling image retrieval with the desired level of confidence in various systems. The algorithm proposed in this paper is expected to be utilized as an optimal imaging system by extracting morphological form information of multimedia data.

A Study on Fashion Design Using Shape Grammar (형상문법(Shape Grammar)을 활용한 패션디자인 연구)

  • Soo Kyung Ko;Chul Yong Choi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • The term 'module' is an architectural term. It refers to the components or systems that make up a finished product. As industries develop, modules have become one of the methods that can create diverse and creative designs. Traditional modular fashion design mainly focused on structural methods, such as the combination, assembly, overlap, and arrangement of modules, as well as the tessellation of geometric shapes. However, in this paper, significance lies in exploring the application of shape grammar, a design method in architecture, to fashion design. It aims to search for ways to express three-dimensional designs, derive designs that can be worn and produced, and propose fashion design by applying the rules of shape grammar to the design process. Through this analysis, the paper aims to examine the methods and characteristics of shape grammar. The research method of this paper is as follows. First, by utilizing optimized programs for implementing the modules of shape grammar, it was possible to propose a method for producing modules of shape grammar and suggest module designs. Additionally, effective methods of representation using the Clo 3D program were explored in the design development process. Second, by applying shape grammar to the fashion design process, five-dimensional modular fashion designs were proposed, including a bolero, dress 1, dress 2, setup, and coat. The proposed modular fashion design using shape grammar in this paper provides a rational design process that differentiates itself from traditional modular fashion design. By formalizing the shapes between modules and creating rules, it overcomes the limitations of design that rely on the designer's intuition or sensibility and enables the development of more diverse modular fashion designs. This application of shape grammar in fashion design can provide an important direction in exploring a sustainable fashion industry.

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

Shape Finding and Stress Finding for Pneumatic Membrane Structures by Dynamic Relaxation Method (동적이완법에 의한 공기막구조물의 형태탐색과 응력해석)

  • 문창훈;이경수;배종효;최옥훈;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.268-275
    • /
    • 1999
  • The purpose of this study is to propose the method of determining the initial pneumatic membrane structures surface and stresses and displacements. Tension structure such as pneumatic membrane structures is stabilized by their initial prestress and air pressure. The process to find initial structural overall shape of tension structures produced by initial prestress called shape finding. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress. The result for initial surface of pneumatic membrane element and maximum displacement in large deformation in analysis is compared with well-known nonlinear numerical method such as Newton-raphson method and dynamic relaxation method

  • PDF

Numerical Optimization of Rib Shape to Enhance Turbulent Heat Transfer (난류열전달 증진을 위한 리브형상의 수치최적화)

  • Kim, S.S.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.304-308
    • /
    • 2000
  • This paper presents a numerical optimization method to design geometric shape of streamwise periodic ribs mounted on one of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The golden section method is used for the one dimensional search. The optimization is based on Wavier-Stokes analysis of turbulent forced convection with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib is chosen as a design variable. The object function is defined as an inverse of average Nusselt number. An optimum shape of the rib has been obtained with reasonable computing time.

  • PDF

Development of CAD System for Optimal Topology Design using Density Distribution (밀도 분포를 이용한 최적 위상 설계 시스템의 개발)

  • 정진평;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

Shape Feature Extraction technique for Content-Based Image Retrieval in Multimedia Databases

  • Kim, Byung-Gon;Han, Joung-Woon;Lee, Jaeho;Haechull Lim
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.869-872
    • /
    • 2000
  • Although many content-based image retrieval systems using shape feature have tried to cover rotation-, position- and scale-invariance between images, there have been problems to cover three kinds of variance at the same time. In this paper, we introduce new approach to extract shape feature from image using MBR(Minimum Bounding Rectangle). The proposed method scans image for extracting MBR information and, based on MBR information, compute contour information that consists of 16 points. The extracted information is converted to specific values by normalization and rotation. The proposed method can cover three kinds of invariance at the same time. We implemented our method and carried out experiments. We constructed R*_tree indexing structure, perform k-nearest neighbor search from query image, and demonstrate the capability and usefulness of our method.

  • PDF

Shape Optimization of High Voltage Gas Circuit Breaker Using Kriging-Based Model And Genetic Algorithm (크리깅 메타모델과 유전자 알고리즘을 이용한 초고압 가스차단기의 형상 최적 설계)

  • Kwak, Chang-Seob;Kim, Hong-Kyu;Cha, Jeong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • We describe a new method for selecting design variables for shape optimization of high-voltage gas circuit breaker using a Kriging meta-model and a genetic algorithm. Firstly we sample balance design variables using the Latin Hypercube Sampling. Secondly, we build meta-model using the Kriging. Thirdly, we search the optimal design variables using a genetic algorithm. To obtain the more exact design variable, we adopt the boundary shifting method. With the proposed optimization frame, we can get the improved interruption design and reduce the design time by 80%. We applied the proposed method to the optimization of multivariate optimization problems as well as shape optimization of a high - voltage gas circuit breaker.

Retrieval of Non-rigid 3D Models Based on Approximated Topological Structure and Local Volume

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3950-3964
    • /
    • 2017
  • With the increasing popularity of 3D technology such as 3D printing, 3D modeling, etc., there is a growing need to search for similar models on the internet. Matching non-rigid shapes has become an active research field in computer graphics. In this paper, we present an efficient and effective non-rigid model retrieval method based on topological structure and local volume. The integral geodesic distances are first calculated for each vertex on a mesh to construct the topological structure. Next, each node on the topological structure is assigned a local volume that is calculated using the shape diameter function (SDF). Finally, we utilize the Hungarian algorithm to measure similarity between two non-rigid models. Experimental results on the latest benchmark (SHREC' 15 Non-rigid 3D Shape Retrieval) demonstrate that our method works well compared to the state-of-the-art.

(Lip Recognition Using Active Shape Model and Gaussian Mixture Model) (Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식)

  • 장경식;이임건
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.454-460
    • /
    • 2003
  • In this paper, we propose an efficient method for recognizing human lips. Based on Point Distribution Model, a lip shape is represented as a set of points. We calculate a lip model and the distribution of shape parameters using Principle Component Analysis and Gaussian mixture, respectively. The Expectation Maximization algorithm is used to determine the maximum likelihood parameter of Gaussian mixture. The lip contour model is derived by using the gray value changes at each point and in regions around the point and used to search the lip shape in a image. The experiments have been performed for many images, and show very encouraging result.