• Title/Summary/Keyword: Shape Rolling

Search Result 299, Processing Time 0.027 seconds

The effect of mechanical processing in BSCCO-2223 tape on critical current density (BSCCO-2223계 초전도 선재의 기계적 가공이 임계 전류 밀도에 미치는 영향)

  • 임성우;강형곤;최명호;박경국;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.355-357
    • /
    • 1998
  • BSCCO-2223 superconducting tape made by PIT method can be influenced in the critical characteristics by the heat treatment and the mechanical processing. Particulary, it has been reported that the mechanical deformation affects the core density, texture of the core, sausaging and so on. Therefore the accurate control of the deformation process is very important to achieve high J$\sub$c/. In this study, we measured the J$\sub$c/ variation for different rolling reduction rate and investigated the change of core shape to compare the formation of sausaging.

  • PDF

The Comparative Analysis of Slipstream Phenomena by High-Speed and Traditional Train (고속(KTX) 및 기존 철도차량의 열차풍 현상 비교 분석)

  • Kim, Dong-Hyeon;Jang, Yong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.173-180
    • /
    • 2007
  • A series of field tests were performed to develop aerodynamic characteristic evaluation method and countermeasure technology in conventional and high-speed railway. The strength of rolling stock-induced wind which affect the people and substructure in platform and nearby track were investigated. The slipstream of passing trains was measured by hot-wire array system. The speed of trains was 110 - 125km/h for conventional ones and 300km/h for high-speed ones. The streamlined shape trains cause about 50% smaller-scale slipstream compared to the non-streamlined ones.

Contact Fatigue Life for RRG System (BRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

A Study on the Lateral Acceleration Pattern by the shape of Worn Wheel for the Urban Railway Vehicle (도시철도차량의 차륜마모에 따른 횡가속도 패턴분석)

  • Yang, Chil-Sig;Lim, Won-Sig;Park, Chan-Kyoung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.66-71
    • /
    • 2006
  • A geometric contact conditions of wheel/rail affect the dynamic behavior of rolling stock. Mechanical force acted on the wheel/rail causes excessive wear and increase the maintenance cost. In this study, we have studied the dynamic behavior of the urban railway vehicle with new and worn wheel by VAMPIRE program. And we have tested the accelerations of wheelset on the conventional line. The results of simulation are compared with the measuring data of field test. It shows that the acceleration of worn wheel is greater than the acceleration of new wheel in the straight track line but on the contrary, the acceleration of new wheel is greater than the acceleration of worn wheel in curved track. That results explain that the new wheel is worn out greater than the worn wheel in curved track line and need to be maintained more seriously when running in curved track line.

  • PDF

Dry Coated Particle for Plasma Spraying

  • Briones-Rodriguez, C.;Mayagoitia-Barragan, V.;Cuenca-Alvarez, R
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.156-157
    • /
    • 2006
  • The preparation of composite powders for plasma spraying by an in-house designed mechanofusion process is investigated. Results show that dry particle coating depends on the chemical and mechanical properties of powders. In metal/oxide and metal/oxide/carbide powder mixtures, fine ceramic particles coat the surface of the metallic coarser particles. A nearly rounded shape of the final composite particles is induced by the mechanical energy input with no formation of new phases. However with the carbide/metal powdered system, only an intimate mixture of components is achieved. It is suggested that the coating mechanism is governed by agglomeration and rolling phenomena.

  • PDF

A Passively Growing Sheath for Reducing Friction of Linearly Moving Structures (리니어 구동 구조의 마찰 저감을 위한 수동형 성장 피복)

  • Seo, Hanbeom;Kim, Dongki;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.159-163
    • /
    • 2022
  • A linearly moving structure in the area where the friction force is dominant - such as ducts filled with grease in the nuclear power plant - experiences increase in friction since the contact surface gets larger as the structure proceeds. To solve this problem is critical for the pipe inspection robot to investigate further area and this makes the system more energy-efficient. In this paper, we propose a passively growing sheath that can be added to linearly moving structures using zipper mechanism. The mechanism enables the linearly moving structures to maintain rolling contact condition against external environment, which provides substantial reduction in kinetic friction. To analyze the effect of the mechanism's head shape, we establish a physical model and compare to the experimental results. Finally, we have shown that the passively growing sheath can be successfully applied to the pipe inspection robot for the nuclear power plant.

On Tap Geometry and Characteristics of Torque in High Speed Tapping (고속태핑에 있어서 탭의 형상과 절삭토크의 특성)

  • Choi, Man-Sung;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.139-145
    • /
    • 1996
  • Tapping is one of the most widely used machining operations. There are several methodes of producing external screw threads, e.g. turning, milling with single or multiple cutter, rolling, and grinding, but the methods available for cutting enternal threads are less numerous, and for threads in small holes, tapping is employed almost exclusively. In this study, the tap with the various geometry has been developed in order to tap special workmaterial at considerably higher cutting speed than that of the conventional HSS tap. The experimental tests are run with various cutting speed by using a piezo type tool dynamometer to measure tapping torque. Tapping torque is affected by the design of the tap, which seems to be due to internal friction and shearing of the metal. It is clarified that the process of chip formation strongly depends on rake angle, relief angle, angle of twist.

  • PDF

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Effect of Oxygen Content on Shape Memory Characteristics of Ti-18Nb-6Zr-XO (X = 0~1.5at%) Alloys (생체용 Ti-18Nb-6Zr-XO (X = 0~1.5at%) 합금의 형상기억특성에 미치는 산소 농도의 영향)

  • Park, Young-Chul;Ock, Ji-Myeon;Oh, Jeong-Hwa;Park, Su-Ho;Lee, Jun-Hee;Kim, Jae-Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.617-622
    • /
    • 2011
  • The effect of oxygen on the shape memory characteristics in Ti-18Nb-6Zr-XO (X = 0-1.5 at%) biomedical alloys was investigated by tensile tests. The alloys were fabricated by an arc melting method at Ar atmosphere. The ingots were cold-rolled to 0.45 mm with a reduction up to 95% in thickness. After severe cold-rolling, the plate was solution-treated at 1173 K for 1.8 ks. The fracture stress of the solution-treated specimens increased from 450 Mpa to 880 MPa with an increasing oxygen content up to 1.5%. The fracture stress increased by 287MPa with 1 at% increase of oxygen content. The critical stress for slip increased from 430 MPa to 695 MPa with an increasing oxygen content up to 1.5 at%. The maximum recovery strain of 4.1% was obtained in the Ti-18Nb-6Zr-0.5O (at%) alloy. The martensitic transformation temperature decreased by 140 K with a 1.0 at% increase in O content, which is lower than that of Ti-22Nb-(0-2.0)O (at%) by 20 K. This may have been caused by the effect of the addition of Zr. This study confirmed that addition of oxygen to the Ti-Nb-Zr alloy increases the critical stress for slip due to solid solution hardening without being detrimental to the maximum recovery strain.

Stability of fishing vessel according to the LED luring lamp installation (LED집어등 설치에 따른 연안 채낚기 어선의 복원성능)

  • Jeong, Seong-Jae;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.623-632
    • /
    • 2014
  • In this study, the stability of fishing vessels get some change in accordance with the installation of LED luring lamp in comparison with metal halide luring lamp were investigated. Inclining test for 9.77 ton class of squid jigging and hair-tail angling vessel was performed in order to make a stability evaluation. A performance analysis of the target vessels to the stability on the basis of KST-SHIP program was evaluated. The results were as follows in this study. The stability of the fishing vessel by a metal halide such as LED and the like according to the result obtained by the inclining test is a slightly present difference, and the stability is not affected. The fishing vessel with LED lamp installed satisfies all the stability criteria specified in law and IMO rule. Compared to the metal halide LED lamp the increase of the height of the center of gravity and the initial transverse metacenter was caused. Due to the LED installation, the somewhat wider wind area of the waterline, which appears as a result, does not lead to an actual increase in rolling period. But then it is necessary to be designed on that the LED lamp shape reduces wind pressure area. Because of LED lamp installation, the GM value of vessels is increasing faster rolling cycle so causes a decrease in the sense that the crew is aboard.