• 제목/요약/키워드: Shape Machining

검색결과 633건 처리시간 0.028초

방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어 (Control of Taper Shape in Micro-Hole Machining by Micro-EDM)

  • 김동준;이상민;이영수;주종남
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

3D 프린팅시스템과 CAM시스템을 활용한 금형가공에 관한 연구 (Research on Die Machining using 3D Printing and CAM System)

  • 한규택
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.91-98
    • /
    • 2014
  • The purpose of this research is to investigate optimum machining conditions to improve the quality of die using the CAD/CAM system(Power Shape/Power Mill) and 3D printing. Surface roughness is widely used as an index for processing degree of accuracy. The Power Shape was used to model the shape of product. And the model shape is confirmed by 3D printing system(BFB-3000). Also, tool path and NC-codes were generated using Power Mill. Finally, the product was cut using CNC machine(NBS-2025). The cutting time and surface roughness were measured by measuring instrument. And then this process was repeated by changing the conditions to find optimal machining conditions. The surface roughness behavior with regard to specific factors were analyzed. Through this study, the optimal machining condition can be obtained.

기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공 (5-axis Machining of Impellers using Geometric Shape Information and a Vector Net)

  • 황종대;윤일우
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

특징형상에 기반한 공정설계를 위한 공차 모델러 개발 (A Development of the Tolerance Modeler for Feature-based CAPP)

  • 김재관;노형민;이수홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.267-271
    • /
    • 2000
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material attributes. Although machining features are useful for suitable shape information for process reasoning in the CAPP, they need to be integrated with tolerance information for effective process planning. We develop the tolerance modeler that efficiently integrates machining features with tolerance information for feature-based CAPP It is based on the association of machining features, tolerance features. and tolerances Tolerance features, where tolerances are assigned, are classified into two types; one is the face that is a topological entity on a solid model and the other is the functional geometry that is not referenced to topological entities. The functional geometry is represented by using machining features All the data for representing tolerance information with machining features are stored completely and unambiguously in the independent tolerance structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.

  • PDF

방전 가공을 이용한 미세 공구 제작과 응용 (Fabrication of Micro-tool by Micro-EDM and Its Applications)

  • 김보현;김동준;이상민;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1902-1906
    • /
    • 2003
  • Micro-milling is an efficient method for fabricating micro structures because of its high machining rate compared with other non-conventional micro machining processes. But it is not easy to make a micro milling tool with less than 50 $\mu\textrm{m}$ in diameter by conventional machining. In this study, the characteristics of a micro milling tool fabricated by wire electrical discharge machining (WEDM) were studied. The workpiece is copper and stainless steel. The effects of some machining conditions such as feed rate, depth of cut, and a shape of tool were studied. The tools with D-shape and square shape in cross section were tested for machining micro grooves and 3D structures.

  • PDF

Ni-Ti 형상기억합금의 전해가공에서 전류효율과 가공특성의 관계 (Relationship between Machining Characteristics & Current Efficiency in Electro Chemical Machining of Ni-Ti Shape Memory Alloy)

  • 김동환;강지훈;박규열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.320-325
    • /
    • 2000
  • This study was performed to investigate the electro-chemical-machining (ECM) characteristic of Ni-Ti Shape Memory Alloy (SMA). From the experimental results, we could gain optimal electro-chemical conditions to bound with lesser machining effect and better surface roughness than any other machining methods to workpiece at the same time. At these conditions, current efficiency was, for especially ECM working of Ni-Ti SMA, approximately 100% and high frequency pulse current was detected.

  • PDF

초정밀 진동 보조 가공 연구 동향 (Current Trends of Vibration-Assisted Machining in Micro/Nano Scales)

  • 이문구;전용호
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.834-839
    • /
    • 2012
  • Recently, mechanical components with miniaturized size, complex shape and fine surface are on demand from industries such as mobile electronics, medical devices and defense. The size of them is smaller than several millimeters, the shape has micro-holes, curve, or multi-step and the surface is mirror-like. This features are not able to be machined with the conventional machining, therefore electro-discharge machining (EDM), cutting, and laser machining have been applied. If the technologies are assisted by vibration, high aspect ratio and good surface are to be achieved. In this paper, prior and current researches of vibration-assisted machining are reviewed. Machining mechanisms with vibration-assisting are explained, their effects are shown, and vibrating apparatuses are discussed. Especially, comparison between with and without vibration assisting is presented. This review shows the vibration-assisted machining is effectively fabricate the components with small and complicated shape and fine surface finish.

고속가공용 엔드밀공구의 형상변화에 의한 성능평가 (Machinability evaluation according to variation of tool shape in high speed machining)

  • 강명창;김정석;이득우;김광호;하동근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성 (Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold)

  • 김창의;전은채;제태진;강명창
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

동근형상가공의 형상모델링과 예측에 관한 연구 (A Study on the Modeling and Prediction of Machined Profile in Round Shape Machining)

  • 윤문철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.659-664
    • /
    • 2000
  • In this paper, We have discussed on the modeling of machined outer geometry which was established for the case of round shape machining, also the effects of externally machined profile are analyzed and its modeling realiability was verified by the experiments of roundness testing, especially in lathe operation. In this study, we established harmonic geometric model with the parameter harmonic function. In general, we can calculate the theoretical roundness profile with arbitrary multilobe parameter. But in real experiments, only 2-5 lobe profile was frequently measured. the most frequently ones are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applies to round shape machining such as turning, drilling, boring, ball screw and cylindrical grinding operation in bearing and shaft making operation with the same method. In this study, simulation and experimental work were performed to show the profile behaviors. we can apply these new modeling method in real process for the prediction of part profile behaviors machined such as in round shape machining operation.

  • PDF