• Title/Summary/Keyword: Shape Engineering

Search Result 12,906, Processing Time 0.04 seconds

Dynamic Performance of Guardrail System with Various Post Shapes Based on 3-D Soil Material Model (3차원 지반재료 모델기반의 다양한 지주형상을 갖는 노측용 가드레일의 동적성능 평가)

  • Lee, Dong Woo;Yeo, Yong Hwan;Yang, Seung Ho;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2014
  • PURPOSES : This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel W-Beam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS : It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.

Visualizing sphere-contacting areas on automobile parts for ECE inspection

  • Inui, Masatomo;Umezun, Nobuyuki;Kitamura, Yuuki
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2015
  • To satisfy safety regulations of Economic Commission for Europe (ECE), the surface regions of automobile parts must have a sufficient degree of roundness if there is any chance that they could contact a sphere of 50.0 mm radius (exterior parts) or 82.5 mm radius (interior parts). In this paper, a new offset-based method is developed to automatically detect the possible sphere-contacting shape of such parts. A polyhedral model that precisely approximates the part shape is given as input, and the offset shape of the model is obtained as the Boolean union of the expanded shapes of all surface triangles. We adopt a triple-dexel representation of the 3D model to enable stable and precise Boolean union computations. To accelerate the dexel operations in these Boolean computations, a new parallel processing method with a pseudo-list structure and axis-aligned bounding box is developed. The possible sphere-contacting shape of the part surface is then extracted from the offset shape as a set of points or a set of polygons.

Measurement of 3D Shape of Fastener using Camera and Slit Laser (카메라와 슬릿 레이저를 이용한 나사 3D 형상 측정)

  • Kim, Jin Woo;Song, Tae Hun;Ha, Jong Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.537-542
    • /
    • 2015
  • The measurement of 3D shape is important in inspecting the quality of product. In this paper, we present a 3D shape measurement system of fastener using a camera and a slit laser. Calibration structure with slits is used in the extrinsic calibration of the camera and laser. The pose of the camera and laser is computed under the same world coordinate system in the calibration structure. Reflection of laser light on the metal surface causes many difficulties in the robust detection of them on image. We overcome this difficulty by using color and dynamic programming. Motor stage is used to rotate the fastener to recover the whole 3D shape of the surface of it.

A Study on the Distribution of Welding Residual Stresses in Laser Welds with the Nail-head Shape (Nail Head 형상을 가지는 레이저 용접 단면부의 잔류응력 분포 특성에 관한 연구)

  • Bang, Han-Sur;Kim, Young-Pyo;Joo, Sung-Min;Kwon, Young-Sub
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.269-273
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated by laser beam and cooled. This phenomenon gives occasion to complex welding residual stresses, which have a great influence on structural instability strength, in laser welds. However, a relevant research on this field is not sufficient until present and residual stress measurements have experimental and practical limitations. For these reasons a numerical simulation may be attractive in order to solve the residual stress problem. In order to determine the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elasto-plastic analysis). From the result of this study, we can confirm the stress concentration is occurred at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

Corrosion Resistance of Fe-Mn-Si-Ni-Cr-TiC Shape Memory Alloy for Reinforcement of Concrete (콘크리트 보강재용 Fe-Mn-Si-Ni-Cr-TiC계 형상기억합금의 내식성)

  • Joo, Jaehoon;Lee, Hyunjoon;Kim, Dohyoung;Lee, Wookjin;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.6
    • /
    • pp.364-370
    • /
    • 2019
  • Fe-Mn-Si-Ni-Cr-TiC alloys have a shape memory property, recovering initial shape by heating. With an aim to improve a durability and stability of building and infrastructure, this Fe-based shape memory alloy (FSMA) can be employed to reinforce concrete structure with creation of compressive residual stress. In this work, corrosion resistance of FSMA was compared with general rebar and S400 carbon steel to evaluate the stability in concrete environment. Potentiodynamic polarization test in de-ionized water, tap-water and 3.5 wt.% NaCl solution with variations of pH was used to compare the corrosion resistance. FSMA shows better corrosion resistance than rebar and S400 in tested solutions. However, Cl-containing solution is critical to significantly reduce the corrosion resistance of FSMA. Therefore, though FSMA can be a promising candidate to replace the rebar and S400 for the reinforcement of concrete structure, serious cautions are required in marine environments.

Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure

  • Wu, Kai;Zhai, Jiangpeng;Xue, Jianyang;Xu, Fangyuan;Zhao, Hongtie
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.335-349
    • /
    • 2019
  • A low-cycle loading experiment of 16 transfer column specimens was conducted to study the influence of parameters, likes the extension length of shape steel, the ratio of shape steel, the axial compression ratio and the volumetric ratio of stirrups, on the shear distribution between steel and concrete, the concrete damage state and the degradation of lateral stiffness. Shear force of shape steel reacted at the core area of concrete section and led to tension effect which accelerated the damage of concrete. At the same time, the damage of concrete diminished its shear capacity and resulted in the shear enlargement of shape steel. The interplay between concrete damage and shear force of shape steel ultimately made for the failures of transfer columns. With the increase of extension length, the lateral stiffness first increases and then decreases, but the stiffness degradation gets faster; With the increase of steel ratio, the lateral stiffness remains the same, but the degradation gets faster; With the increase of the axial compression ratio, the lateral stiffness increases, and the degradation is more significant. Using more stirrups can effectively restrain the development of cracks and increase the lateral stiffness at the yielding point. Also, a formula for calculating the yielding lateral stiffness is obtained by a regression analysis of the test data.

Level Set based Shape Optimization using Extended B-spline Bases (확장 B-spline 기저 함수를 이용한 레벨셋 기반의 형상 최적 설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.391-396
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady state heat conduction problems. The only inside of complicated domain is identified by the level set functions and taken into account in computation. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. The nucleation of holes is possible whenever and wherever necessary during the optimization using a topological derivative concept.

  • PDF

A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact (저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구)

  • 손세원;이두성;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF

Experimental Determination of the Optimum Blank Shape in Rectangular Cup Drawing (사각 컵 드로잉 공정에서의 최적 블랭크 형상 결정)

  • 배원병;허병우;김호윤;이영석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.68-71
    • /
    • 1998
  • Rectangular deep drawing process is widely used in sheet metal forming. But there are various defects such as earring, wrinkling, tearing, etc. In order to avoid the defects, an optimum blank shape is required. But it has not been generalized to determine the optimum blank shape because deep drawing processes are involved in complex process parameters. So, it is very necessary to do research systematically about determining the optimum blank shape of deep drawing process. In this study a rectangular cup drawing test has been carried out to determine the optimum blank shape for various stainless steel sheets. From the test, a new blank model, which has no earring, is proposed.

  • PDF

A Study on Shape Design Approach of Disk Cams using Relative Velocity of Followers (종동절의 상대속도를 이용한 원반 캠의 형상 설계법에 관한 연구)

  • 신중호;강동우;김종수;김대원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.185-192
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Since the motion of the cam mechanism depends on the shape of the cam and the type of the follower, the shape design procedure must be well defined in order to determine the accurate shape of the cam corresponding to the prescribed motion of the follower. This paper proposes a new approach for designing the shape of disk cams. The proposed relative velocity method uses the relative velocity at center of the follower roller or at contact point between the cam and the follower for 4 different types of the disk cam systems. Also, the relative velocity method for determining the cam profile uses the geometric relationships of the cam and the follower.

  • PDF