• Title/Summary/Keyword: Shape Design Variation

Search Result 371, Processing Time 0.03 seconds

Billet Treatment and Die Design for Net-Shape Forming of Gear by Cold Forging (정밀정형 냉간단조 기어성형을 위한 소재처리와 다이설계)

  • Kang K.G.J.;Park H.J.;Yun J.C.;Kim J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, net-shape forming of an automobile gear is investigated. Barrel, a component of automobile start motor, is adopted as a net-shape forming. In order to accomplish the goal of net-shape forming without cutting of tooth and cam after forming, forming ability is raised through billet treatment and die design. As a technique of billet treatment spheroidizing annealing of billet to get low hardness and molybdenum disulphide coating to get low contact friction between billet and die is carried out. One of critical points of die design, fillet radii variation of tooth of die is applied to get smooth surface of barrel after cold forging. As a measurement of tooth accuracy, distance between two pins and lead-tooth alignments are investigated. Cam profile accuracy is checked with a 3D measuring instrument. Results obtained from the tests revealed reasonable result with respect to design goal. By these results, the paper shows that reasonable results can be obtained by billet treatment and die design for net-shape forming.

  • PDF

Aerodynamic Characteristics for various front shapes of High Speed Train (고속열차의 선두부 형상에 따른 공력특성 변화)

  • Lee S. C.;Kim S. L.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.49-54
    • /
    • 1995
  • A numerical analysis on the effect of the front shape on the aerodynamic characteristics of HST model is made, using FVM based general purpose 3D Navier-Stokes eq. solver, TURBO-3D program. Numerical solutions are compared with each case of different front shape for HST model. The result shows a good quantitative aerodynamic characteristic tendencies for variation of front shape of HST. Thus it may be used as a basis in the design of the shape of real HST.

  • PDF

Shape Optimization of Electric Machine Considering Uncertainty of Design Variable by Stochastic Finite Element Method (확률유한요소법을 이용한 설계변수의 불확실성을 고려한 전기기기의 형상최적설계)

  • Hur, Jin;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.219-225
    • /
    • 2000
  • This paper presents the shape optimization considering the uncertainty of design variable to find robust optimal solution that has insensitive performance to its change of design variable. Stochastic finite element method (SFEM) is used to treat input data as stochastic variables. It is method that the potential values are series form for the expectation and small variation. Using correlation function of their variables, the statistics of output obtained form the input data distributed. From this, design considering uncertainty of design variables.

  • PDF

Shape Design Sensitivity Analysis for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상설계민감도해석)

  • Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.76-83
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section and bottle shaped column are chosen to illustrate the efficiency of the presented method.

Shape Design Sensitivity Analysis for Stability of Elastic Structure (탄성 구조물의 안정성을 고려한 형상설계 민감도해석)

  • Choi Joo-Ho;Yang Wook-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.841-846
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section are chosen to illustrate the efficiency of the presented method.

  • PDF

The barrier shape design for maximization of torque density in IPMSM (IPMSM의 토크밀도 극대화를 위한 Barrier의 형상 설계)

  • Youn, Jin-Gyu;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.897_898
    • /
    • 2009
  • This paper deal with the shape design of the flux barrier to maximize the torque density and minimize the torque ripple in IPM type BLDC motor. The variation of magnetic torque and reluctance toque according to the flux barriers is analyzed in the 120 conducting period. From the result, we confirmed the barrier can be quite worthwhile for the better performance of IPM type BLDC motor

  • PDF

A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach (철도객차용 크로스 빔의 경량화 설계에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

Aerodynamic Shape Design of a Partial Admission Turbine Using CFD (CFD를 이용한 부분흡입형 터빈 공력형상 설계)

  • Lee, Eun-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1131-1138
    • /
    • 2006
  • Aerodynamic shape design of a partial admission turbine using CFD has been performed. Two step approaches are adopted in this study. Firstly, two-dimensional blade shape is optimized using CFD and genetic algorithm. Initially, the turbine cascade shape is represented by four design parameters. By controlling the design parameters as variables, the non-gradient search is analyzed for obtaining the maximum efficiency. The final two-dimensional blade proved to have a more blade power than the initial blade. Secondly, the three-dimensional CFD analysis including the nozzle, rotor and stator has been conducted. To avoid a heavy computational load due to an unsteady calculation, the frozen rotor method is implemented in steady calculation. The frozen rotor method can detect a variation of the flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a better idea of wake loss mechanism starting from the lip of the nozzle than the mixing plane concept. Finally, the combination of two and three dimensional design method of the partial admission turbine in this study has proven to be a robust tool in development phase.

Active and Morphing Aerospace Structures-A Synthesis between Advanced Materials, Structures and Mechanisms

  • Baier, Horst;Datashvili, Leri
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.225-240
    • /
    • 2011
  • Active and shape morphing aerospace structures are discussed with a focus on activities aimed at practical implementation. In active structures applications range from dynamic load alleviation in aircraft and spacecraft up to static and dynamic shape control. In contrast, shape morphing means strong shape variation according to different mission status and needs, aiming to enhance functionality and performance over wide flight and mission regimes. The interaction of required flexible materials with the morphing structure and the actuating mechanisms is specifically addressed together with approaches in design and simulation.

A study on the shoulder composition methods of power shoulder jackets and corresponding details (파워숄더 재킷의 어깨 구성 방법과 디테일 대응 분석)

  • Park, Jeongah;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.3
    • /
    • pp.388-405
    • /
    • 2021
  • This study classifies the compositional methods of power shoulder jackets from 1980 to the present. It analyzes the relevance of jacket details according to how the power shoulder changes and its compositional methods by era. The research subdivides shoulder compositional techniques into seven, based on shoulder variation, sleeve variation, and the body and sleeve combination. The researcher investigates the frequency and trends of composing shoulders and analyzes details pertaining to the silhouette, jacket length, collar shape, and front closure. The most common method of shoulder composition is an angular shoulder variation. The others are a rounded shoulder variation, puffed sleeve, sleeve variation using pattern incision, raglan and kimono sleeves, and a shoulder variation that expanded the angle and width. The frequency differs slightly for each era. The relationship between shoulder compositional methods and details of power shoulder jackets is statistically significant, showing period-related differences. The homogeneity analysis results reveal that the shoulder composition of power shoulder jackets, the times, and details fall into distinct groups. This analysis shows that the silhouette, length, collar, and front closure of the power shoulder jacket differ depending on the power shoulder's compositional methods. Moreover, the shape of the power shoulder jacket is distinctly different. One can use this data to help develop the power shoulder jacket design by reflecting the details of shoulder compositional methods and changing trends over time.