• Title/Summary/Keyword: Shape Design Optimization

Search Result 1,195, Processing Time 0.028 seconds

Shape Optimization of an Air-conditioner Compressor Mounting Bracket (차량용 에어컨 컴프레서 브라켓의 형상최적화)

  • 제형호;김찬묵;강영규;이두호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.389-394
    • /
    • 2003
  • In this paper, a shape optimization technique is applied to design of an air-conditioner mounting bracket. The mounting bracket is a structural component of an engine, on which bolts attach an air-conditioner compressor. The air-conditioner mounting bracket has a large portion of weight among the engine components. To reduce weight of the bracket, the shape is optimized using a finite element software. The compressor assembly, composed of a compressor and a bracket is modeled using finite elements. An objective function for the shape optimization of the bracket is the weight of the bracket. Two design constraints on the bracket are the first resonant frequency of the compressor assembly and the fatigue life of the bracket. The design variables are the shape of the bracket including thickness profiles of the front and back surfaces of the bracket, radius of outer bolt-holes, and side edge profiles. The coordinates of the FE nodes control the shape parameters. Optimal shapes of the bracket are obtained by using SOL200 of MSC/NASTRAN.

  • PDF

A DESIGN OPTIMIZATION STUDY OF BLUNT NOSE HYPERSONIC FLIGHT VEHICLE MINIMIZING SURFACE HEAT-TRANSFER RATE AND DRAG (표면 열전달율과 항력을 최소화한 극초음속 비행체 선두부 형상 최적설계)

  • Lim S.;Seo J. I.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.27-35
    • /
    • 2005
  • A design optimization of hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. CFD method is linked to numerical optimization method by using a Bezier curve and a design optimization of blunt nose hypersonic flight vehicle has been studied. Heat transfer coefficient and drag coefficient are selected as objective functions or design constraints. The Bezier curve-based shape function was applied to blunt body shape.

A Study on 2-D Airfoil Design Optimization by Kriging (Kriging 방법을 이용한 2차원 날개 형상 최적설계에 대한 연구)

  • Ka Jae Do;Kwon Jang Hyuk
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • Recently with growth in the capability of super computers and Parallel computers, shape design optimization is becoming easible for real problems. Also, Computational Fluid Dynamics(CFD) techniques have been improved for higher reliability and higher accuracy. In the shape design optimization, analysis solvers and optimization schemes are essential. In this work, the Roe's 2nd-order Upwind TVD scheme and DADI time march with multigrid were used for the flow solution with the Euler equation and FDM(Finite Differenciation Method), GA(Genetic Algorithm) and Kriging were used for the design optimization. Kriging were applied to 2-D airfoil design optimization and compared with FDM and GA's results. When Kriging is applied to the nonlinear problems, satisfactory results were obtained. From the result design optimization by Kriging method appeared as good as other methods.

The size and shape optimization of plane trusses using the multi-levels method (다단계 분할기법에 의한 평면트러스의 단면치수 및 형상 최적화)

  • Pyeon, Hae-Wan;Oh, Kyu-Rak;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.515-525
    • /
    • 2000
  • The purpose of this paper was to develop size & shape optimization programming algorithm of plane trusses. The optimum techniques applied in this study were extended penalty method of Sequential Unconstrained Minimization Techniques(SUMT) and direct search method with multi-variables proposed by Hooke & Jeeves. Upper mentioned two methods were used iteratively at each level of size and shape optimization routines. The design variables of size optimization were circular steel tube(structural member) diameter and thickness, those of shape optimization were joint coordinates, and the objective function was represented as total weight of truss. During the optimum design, two level procedures of size and shape optimization were interacted iteratively until the final optimum values were attained. At the previous studies about shape optimization of truss, the member sectional areas and coordinates were applied as design variables. So that they could not apply the buckling effect of compression member. In this paper, actual sizes of member and nodal coordinates are used as design variables to consider the buckling effect of compression member properly.

  • PDF

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model (단순유한요소모델을 이용한 차체필라 형상최적설계)

  • 이상범
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

Design Sensitivity Analysis for Shape Optimization of Electromagnetic Device with Finite Element Method (설계민감도해석과 FEM에 의한 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.835-837
    • /
    • 2002
  • This paper presents a shape optimization algorithm of electromagnetic devices using the design sensitivity analysis with FEM. The design sensitivity and adjoint variable formulas are derived for the 3D FEM with edge element. This algorithm is applied to 3D electro-magnet pole shape optimization problem to make a uniform flux density at the target region.

  • PDF

Shape Design of Passages for Turbine Blade Using Design Optimization System (최적화설계시스템을 이용한 터빈블레이드 냉각통로의 형상설계)

  • Jeong Min-Joong;Lee Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1013-1021
    • /
    • 2005
  • In this paper, we developed an automatic design optimization system for parametric shape optimization of cooling passages inside axial turbine blades. A parallel three-dimensional thermoelasticity finite element analysis code from an open source system was used to perform automatic thermal and stress analysis of different blade configuration. The developed code was connected to an evolutionary optimizer and built in a design optimization system. Using the optimization system, 279 feasible and optimal solutions were searched. It is provided not only one best solution of the searched solutions, but also information of variation structure and correlation of the 279 solutions in function, variable, and real design spaces. To explore design information, it is proposed a new interpretation approach based on evolutionary clustering and principal component analysis. The interpretation approach might be applicable to the increasing demands in the general area of design optimization.

Shape Optimization of Waveguide Tee Junction in H-plane (자기 평면 도파관 소자의 최적형상설)

  • 이홍배;한송엽;천창열
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1020-1026
    • /
    • 1994
  • This paper presents a technique to optimize the shape of waveguide components in H-plane. The technique utilizes the numerical optimization process which employs the vector finite element method. In the optimization process, the sensitivity of an objective function with respect to design variables is computed by introducting adjoint variables, which makes the computation easy. The steepest descent method is then employed to update design variables. As a numerical example, an H-plane waveguide teejunction was considered to obtain optimized shape. Comparison between the initial and optimized shape was made.

A Design Optimization Study of Diffuser Shape in a Supersonic Inlet

  • Lim, S.;Koh, D.H.;Kim, S.D.;Song, D.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.756-760
    • /
    • 2008
  • Optimum shape of Double-cone supersonic inlet is studied by using numerical methods. Double-cone intake shape is used for the design optimization study. And the total pressure recovery at the exit is used to assess the aerodynamic performance of the inlet.

  • PDF