• 제목/요약/키워드: Shape Context

Search Result 191, Processing Time 0.031 seconds

SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors (SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭)

  • Noh, Chung-Ho;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.73-83
    • /
    • 2009
  • In this paper we propose an object similarity matching method based on shape characteristics of an object in an image. The proposed method extracts edge points from edges of objects and generates a log polar histogram with respect to each edge point to represent the relative placement of extracted points. It performs the matching in such a way that it compares polar histograms of two edge points sequentially along with edges of objects, and uses a well-known k-NN(nearest neighbor) approach to retrieve similar objects from a database. To verify the proposed method, we've compared it to an existing Shape-Context method. Experimental results reveal that our method is more accurate in object matching than the existing method, showing that when k=5, the precision of our method is 0.75-0.90 while that of the existing one is 0.37, and when k=10, the precision of our method is 0.61-0.80 while that of the existing one is 0.31. In the experiment of rotational transformation, our method is also more robust compared to the existing one, showing that the precision of our method is 0.69 while that of the existing one is 0.30.

The Effects of Gestalt Principles on the Perceived Usability of User Interface in a Web Context (게쉬탈트 원리가 사용자 인터페이스의 지각된 사용가능성에 미치는 영향에 대한 탐색적 연구)

  • Jung, Won-Jin;Yim, Hyung-Rok
    • The Journal of Information Systems
    • /
    • v.19 no.1
    • /
    • pp.117-148
    • /
    • 2010
  • The user interface (UI) is the part of the systems that users can see, hear and feel. That means, a user can interact with the systems through the user interface. Effective user interfaces create positive feelings of success and competence. In addition, they enable users to concentrate on their work, exploration, or pleasure. The German word "Gestalt" means "whole" as well as a figure or a shape. A comprehensive information systems (IS) literature review found that there has been little empirical evidence on the Gestalt principles in UIs that affect online users' perceived usability in a Web context. Therefore, the goals of this study are to 1) examine the relationships between Gestalt principles in UIs and online users' perceived usability in a Web context and 2) come up with design guidelines to enhance user success. Using a survey, this study explored the relationships between Gestalt principles used in six Web sites and 17 aspects of usability. The results showed that in terms of 16 aspects of usability, there are significant differences among the UIs that have different levels of Gestalt principles. In practice, online stores may use these findings to improve their Web pages. Specifically, the sixteen usability attributes can be used to check whether online stores' Web pages meet customers' user interface quality expectations.

Analysis on Dominant Factor for Gait Recognition (걸음걸이 인식을 위한 지배 요소 분석)

  • 박한훈;박종일
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.321-324
    • /
    • 2003
  • This paper presents a novel system that analyzes and recognizes a gait based on shape context on silhouette images. The main functions of the system consist of three steps: First, the system extracts the silhouette images from galt image sequence by performing a simple pre-processing and acquires the AGM(Averaged Gait Map) by averaging them. Next. it computes the cross-correlation between the AGMs. Finally, it classifies the AGMs based on the cross-correlation using nearest neighborhood classification. The proposed system uses two cues to classify a gait: One corresponds to biometric shape cue such as body height width. and body-part proportions. The other corresponds to gait cue such as stride length and amount of arm swing. Perceptionally, the biometric cues are sailent on the double support (both legs spread and touching the ground) while the gait cues on the midstance. Through a variety of experiments, it is proved that the property of a gait is mainly influenced by gait cues than biometric cues.

  • PDF

An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain (임의의 절점 추가에 의한 개선 유한요소법)

  • Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1626-1633
    • /
    • 2006
  • In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.

Shape and Appearance Repair for Incomplete Point Surfaces (결함이 있는 점집합 곡면의 형상 및 외관 수정)

  • Park, Se-Youn;Guo, Xiaohu;Shin, Ha-Yong;Qin, Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.330-343
    • /
    • 2007
  • In this paper, we present a new surface content completion system that can effectively repair both shape and appearance from scanned, incomplete point set inputs. First, geometric holes can be robustly identified from noisy and defective data sets without the need for any normal or orientation information. The geometry and texture information of the holes can then be determined either automatically from the models' context, or manually from users' selection. After identifying the patch that most resembles each hole region, the geometry and texture information can be completed by warping the candidate region and gluing it onto the hole area. The displacement vector field for the exact alignment process is computed by solving a Poisson equation with boundary conditions. Out experiments show that the unified framework, founded upon the techniques of deformable models and PDE modeling, can provide a robust and elegant solution for content completion of defective, complex point surfaces.

FEM Analysis for the Prediction of Void Closure On the Open Die Forging Process (자유단조공정에서 기공폐쇄 예측을 위한 유한요소해석)

  • Min, K.Y.;Lim, S.J.;Choi, H.J.;Choi, S.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.71-74
    • /
    • 2008
  • In order to resolve the problems which appear after the clean large ingot production process, the impurities which are involved in the steel smelting process should be removed by developing cleaner materials. Through the rationalization of cogging process that is the first forging process of large ingot the quality is to be improved. For the sake of the optimization of an open die forging process and the improvement of the subject matter frequency ratio, a hazard precise die forging process must be developed and a Near Net Shape Forming accomplished. As a result, energy can be reduced by minimizing an after control process. In order to produce large axes and other forming parts, processing techniques are to be developed. In this context, this paper is a study about a reduction ratio, dies width ratio and rotary angles, the amount of overlap, and intends to analysis cogging processes, utilizing Deform-3D cogging module

  • PDF

Context- and Shape-Aware Safety Monitoring for Construction Workers

  • Wei-Chih Chern;Kichang Choi;Vijayan Asari;Hongjo Kim
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.423-430
    • /
    • 2024
  • The task of vision safety monitoring in construction environments presents a formidable challenge, owing to the dynamic and heterogeneous nature of these settings. Despite the advancements in artificial intelligence, the nuanced analysis of small or tiny personal protective equipment (PPE) remains a complex endeavor. In response to this challenge, this paper introduces an innovative safety monitoring system, specifically designed to enhance the safety monitoring of working both at ground level and at elevated heights. This novel system integrates a suite of sophisticated technologies: instance segmentation, shape classification, object tracking, a visualization report, and a real-time notification module. Collectively, these components coalesce to deliver a safety monitoring solution, ensuring a higher standard of protection for construction workers. The experimental results…..

Perception and action: Approach to convergence on embodied cognition (지각과 행위: 체화된 인지와의 융복합적 접근)

  • Lee, Young-Lim
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.555-564
    • /
    • 2016
  • Space perception is generally treated as a problem relevant to the ability to recognize objects. Alternatively, the data from shape perception studies contributes to discussions about the geometry of visual space. This geometry is generally acknowledged not to be Euclidian, but instead, elliptical, hyperbolic or affine, which is to say, something that admits the distortions found in so many shape perception studies. The purpose of this review article is to understand perceived shape and the geometry of visual space in the context of visually guided action. Thus, two prominent approaches that explain the relation between perception and action were compared. It is important to understand the fundamental information of how human perceive visual space and perform visually guided action for the convergence on embodied cognition, and further on artificial intelligence researches.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

On the Byzantine Domes in St. Nicholas Orthodox Church Seoul (1968) and St. Dionysios Orthodox Church Ulsan (2005) (서울 성 니콜라스 대성당(1968)과 울산 성 디오니스소스 성당(2005)에서 비잔틴 돔의 구축 방식)

  • Woo, Don-Son;Lee, Jiyun
    • Journal of architectural history
    • /
    • v.33 no.4
    • /
    • pp.17-28
    • /
    • 2024
  • This study compares St. Nicholas' Orthodox Church in Seoul (1968) and St. Dionysios' Orthodox Church in Ulsan (2005), which are Byzantine-style churches under the Korean Orthodox Church, with Hagiya Sophia in Istanbul, a masterpiece of Byzantine architecture. Focusing on the construction method and shape of the dome, which is a major characteristic of Byzantine architecture, this study compares the architectural background of these three churches, the presence and shape of the dome, the presence of drums, and the number and shape of skylights. As a result, it was found that these three churches differ in the construction method of the dome due to differences in different architectural backgrounds and structural methods, and that these structural and morphological differences ultimately determine the atmosphere of the interior space of the cathedral. This study examines two representative Byzantine Orthodox churches in Korea, both designed by the same architect, Zho Chang Han (b. 1936), with a time gap of approximately 40 years between them. It holds particular significance in exploring how the Byzantine dome was constructed differently by analyzing the historical context and structural characteristics of the Orthodox Church.