• 제목/요약/키워드: Shallow thickness

검색결과 180건 처리시간 0.023초

무관수 옥상녹화시스템의 차이에 따른 들잔디 적응성 평가 (Evaluation on Adaptation of Zosia japonica as Effected by Different Green Roof System under Rainfed Conditon)

  • 주진희;김원태;최우영;윤용한
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1137-1142
    • /
    • 2010
  • This study proposes a guideline of a green roof system suitable for the local environment by verifying the growth of Zoysia japonica in a shallow, extensive, green roof system under rainfed condition. The experimental soil substrates into which excellent drought tolerance and creeping Z. japonica was planted were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$). The plant height, green coverage ratio, fresh weight, dry weight and chlorophyll contents of Z. japonica were investigated. For the soil thickness of 15cm, the plant height of Z. japonica was significantly as affected by the soil mixing ratio and it was shown in the order SL= $P_4P_4L_2$ < $P_7P_1L_2$ = $P_5P_3L_2$ < $P_6P_2L_2$. For the soil thickness of 25cm, the plant height was increased in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was not observed by soil the mixing ratio or soil thickness. However, the green coverage ratio was 86~90% with a good coverage rate overall. The chlorophyll contents of Z. japonica were not significantly affected by the soil mixing ratio in the soil thickness of 15cm, but were higher in the natural soil than in the artificial soil at 25cm soil thickness. The fresh weight and dry weight of Zoysia japonica were heavier in the 25cm thickness than in the 15cm thickness and in the artificial soil mixture than in the natural soil. The result indicated that the growth of Zoysia japonica was more effective in the 25cm soil thickness with artificial soil than in the 15cm soil thickness with natural soil in the green roof system under rainfed condition.

저토심 옥상녹화시스템에 따른 토양수분의 변화 (Change Soil Water and Evaluation with Respect to Shallow-Extensive Green Roof System)

  • 박준석;박지혜;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제19권7호
    • /
    • pp.843-848
    • /
    • 2010
  • This study focused on the characteristics of change soil water with respect to soil thickness and soil mixture ratio, in order to effectively carry out an afforestation system for a roof with a low level of management and a light weight. Soil hardness tended to increase as sand particle was increase regardless soil thickness and soil porosity had more higher artificial soil than natural soil mixture. In case of soil pH, natural soil mixture had between 6.7 and 7.4, and artificial soil mixture had 6.0~6.8. Organic matter, electrical conductance and exchangeable content were highest in $L_{10}$, which it had the highest leafmold ratio. Soil moisture tension(kPa) in 15cm soil thickness was observed natural soil mixture had a considerable change but artificial soil mixture had a gradual change when non-rainfall kept on. In the experimental $L_{10}$, $S_{10}$, $S_7L_3$ and $S_5L_5$ object, the amount of moisture tended to rapidly decrease. However, in the experimental $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ objects, which contained pearlite and peat moss, the amount of moisture tended to gradually decrease. As a result, the use of a artificial soil mixture soil seems to be required for the afforestation of a roof for a low level of management.

거제 인근해역에서 측정된 중주파수 음향 해저면 반사 신호를 이용한 표층 해저면 두께 추정 (Estimation of surficial sediment thickness using mid-frequency ocean acoustic bottom reflected signals measured in shallow water off Geoje island)

  • 권혁종;최지웅;손수욱;조성호;한주영;박정수;박경주
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.419-426
    • /
    • 2016
  • 천해 환경에서 수평입사각에 따른 음향반사 신호 측정 실험을 2015년 10월 거제 인근 해역에서 실시하였다. 본 논문에서는 수평입사각 $9{\sim}14^{\circ}$ 범위에서 측정된 중주파수 4 ~ 8 kHz의 표층 해저면 반사 신호와 하부 퇴적층 반사신호의 도달시간 차이를 이용하여 표층 퇴적층의 두께를 역으로 추정하였다. 실험 해역의 지질 정보는 한국지질자원 연구원에서 제공한 실험 해역의 평균입도범위인 $8{\sim}10{\phi}$를 사용하였다. 두 다중경로의 도달시간 차이를 이용하여 추정한 표층 퇴적층의 두께는 4 ~ 7 m이며, 한국해양과학기술원이 제공한 실험 해역 인근의 천부지층탐사기를 이용한 하부 퇴적층 분석 결과와 비교하였다.

$B_{10}H_{14}$ 이온 주입을 통한 ultra-shallow $p^+-n$ junction 형성 및 전기적 특성 (Electrical Properties of Ultra-shallow$p^+-n$ Junctions using $B_{10}H_{14}$ ion Implantation)

  • 송재훈;김지수;임성일;전기영;최덕균;최원국
    • 한국진공학회지
    • /
    • 제11권3호
    • /
    • pp.151-158
    • /
    • 2002
  • Decaborane ($B_{10}H_{14}$) 이온 주입법으로 n-type Si (100) 기판에 ultra-shallow $p^{+}-n$ 접합을 형성시켰다. 이온 주입에너지는 5kV와 10kV, 이온 선량은 $1\times10^{12}\textrm{cm}^2$$1\times10^{13}\textrm{cm}^2$로 decaborane을 이온 주입시켰다. 이온 주입된 시료들은 $N_2$ 분위기에서 $800^\{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$에서 10초 동안 RTA(Rapid Thermal Annealing) 처리를 하였다. 또한 가속에너지에 따른 결함을 확인하기 위해서 15 kV의 이온 주입 에너지에서 $1\times10^{14}\textrm{cm}^2$만큼 이온 주입하였다. 2 MeV $^4He^{2+}$ channeling spectra에서 15 kV로 주입된 시료가 bare n-type Si와 5 kV, 10 kV의 에너지로 주입된 시료보다 주입시 생긴 결함에 의해 backscattering yield가 더 높게 나타났으며 spectra로부터 얻은 이온 주입으로 인한 비정질층의 두께는 표면으로부터 가속전압이 5kV, 10kV, 15kV일 때 각각 1.9nm, 2.5nm, 4.3nm였다. 10 kV에서 이온 주입된 시료를 $800^{\circ}C$ 열처리 한 결과 결함의 회복으로 인해 bare Si와 비슷한 backscattering yield를 보였으며 이때의 계산된 비정질 층의 두께는 0.98 nm이었다. 홀 측정과 면저항 측정은 dopant의 활성화가 주입된 에너지, 이온 선량, 열처리 온도에 따라 증가함을 보여주었다. I-V 측정 결과 누설 전류 밀도는 열처리 온도가 $800^{\circ}C$에서 $1000^{\circ}C$까지 증가함에 따라 감소하였고 주입에너지가 5kV에서 10kV까지 증가함에 따라 증가하였다.

The Depth and Configuration of The Basement at Sokotra Basin, Offshore Korea Using Marine Magnetics

  • Suh Mancheol;Abdallatif Tareq F.;Han Jungsik;Choi Sungho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2004년도 대한지구물리학회.한국지구물리탐사학회 공동학술대회 초록집
    • /
    • pp.165-169
    • /
    • 2004
  • Marine magnetic survey were carried out at Sokotra Basin offshore Korea between latitudes $31^{\circ}$ 42'32' N and $32^{\circ}$ 46'29' N, and longitudes $123^{\circ}$ 56'26" E and $125^{\circ}$ 49'16" E in order to estimate the depth of basement complex and as well as to configure it surface and produce the thickness of sedimentary sequence at the study area. Two methods have been used for depth estimation and basement configuration: the power spectrum and the 3-D analytical signal. The estimated depths resulted from the power spectrum method range from 1.4 km to 6.0 km for deep sources (basement troughs), and from 0.3 km to 1.75 km for shallow source (basement peaks). An isopach map was prepared for estimating the thickness of the sedimentary sequence at the study area; it ranges from 1.2 to 4.66 km. The estimated depths resulted from the analytic signal method range from 1.0 to 6 km. A basement configuration map was constructed for the study area in the basin. They show a well agreement with the geology of the study area.

  • PDF

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Fusulinids from the Carboniferous strata in the Gangdong area of Samcheok coalfield, Korea

  • Lee, Chang-Zin;Kim, Jun-Ho;Lee, Sang-Min
    • 한국지구과학회지
    • /
    • 제27권7호
    • /
    • pp.768-777
    • /
    • 2006
  • The goal of this study is to elucidate the fusulinid biostratigraphy of the Carboniferous limestones distributed in the Gangdong area of Samcheok coalfield, Korea. The Carboniferous strata of the study area mainly comprise alternaton of dark gray shale, dark gray and reddish sandstone, and gray limestone. The limestones consist mainly of wackestonepackstone containing various fossil fragments such as crinoid, coral, brachiopod, foraminifera, fusulinid, and bryozoa; this observation thus suggests that the study site was the shallow marine environments. A tital of 12 species belonging to 5 genera of fusulinids are identified from the limestones of the Gangdong geologic section: Ozawainella turgida Sheng, Ozawainella sp. A, Ozawainella magna Sheng, Pseudostaffella antiqua (Dutkevich), Pseudostaffella paracompressa Safonova, Pseudostaffella kimi Cheong, Pseudostaffella sp., Beedeina lanceolata (Lee and Chen), Beedeina samarica (Rauser-Chernoussova), Beedeina sp. A, Neostaffella sphaeroidea cuboides Rauser-Chernoussova, and Hanostaffella hanensis Cheong. Such fusulinids species were reported from the lower part of the Geumcheon Formation in Samcheok coalfield and the middle Moscovian stage in Eurasia. On the basis of the fusulinid biostratigraphic correlation of the Gangdong geologic sections (A) to (C), the limestone should be overlapped by faults and folds. Moreover the stratigraphic thickness of the limestone is thinner than the thickness of the limestone outcrop of the Gangdong geologic section. Therefore, the stratigraphic sequence of the Gangdong geologic section is represented as the Gangdong geologic section (A).

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh;Mirzaei, Mostafa;Adlparvar, Mohammad R.
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.43-57
    • /
    • 2021
  • In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

상관관계를 이용한 천해 3층모델의 2층 모델로의 전환조건에 대한 연구 (A Study on the Conversion Condition of Shallow Water 3-layered Model into 2-layered Model with Correlation)

  • 김영선;김성부
    • 한국음향학회지
    • /
    • 제27권2호
    • /
    • pp.92-101
    • /
    • 2008
  • 다층 모델이 갖는 문제점을 해소하고, 2층 모델의 지나친 간결성을 보완하기 위해 유체-유체-탄성체로 이루어진 3층 모델을 가정하였다. 일반적으로 퇴적층의 두께가 10파장 이상인 경우, 수층 내의 음장에 대한 암반층의 영향을 무시할 수 있다고 알려져 왔는데, 음장의 계산결과와 실험결과간의 최대 상관계수을 추적하는 방법을 통해 그 같은 조건이 보다 구체화 할 수 있음을 확인하였다. 최대 상관계수를 구하기 위해 단일센서로부터 얻어진 전달손실을 사용하였다. 음속이 1813m/s인 퇴적층을 가정할 경우 50 kHz에서 120 kHz 간의 주파수 범위에서 2층모델로 전환되는 조건은 2.5파장내지 7.7파장 범위에 존재하였다.

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.