• Title/Summary/Keyword: Shallow Water Condition

Search Result 179, Processing Time 0.029 seconds

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of the Apparent Shear Force (ASF)

  • Chun, Moo-Kap;Jee, Hong-Kee
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.41-56
    • /
    • 1997
  • A new routing computer model for the symmetric compound channel called the ASRMCS(Apparent Shear Force Muskingum-Cunge Method in Symmetry) has been developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force (ASF) between the deep main channel and the shallow floodplan flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method(GPMC) are also compared with those of above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show a smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing early rise and fall of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

Foraminifera from shell deposits of the Jindo Island (진도 패각층의 유공충)

  • Lee Ho-Young
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.63-67
    • /
    • 1993
  • Foraminiferal assemblages from shell beds of Jindo Island indicate shallow water accumulation under warm to temperate condition near the mouth of a small estuary. 11 species of benthonic Foraminifera belonging to 10 genus have been extracted from 12 samples. Cavarotalia annectens dominates, accounting for 57 to 90 percent of the total fauna. The foraminiferal assemblages of the shell beds indicates Post-glacial sedimentation.

  • PDF

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

Numerical Study on Characteristics of Ship Wave According to Shape of Waterway Section

  • Hong Chun-Beom;Lee Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2263-2269
    • /
    • 2005
  • The ship wave phenomena in the restricted waterway were investigated by a numerical analysis. The Euler and continuity equations were employed for the present study. The boundary fitted and moving grid system was adopted to enhance the computational efficiency. The convective terms in the governing equations and the kinematic free surface boundary condition were solved by the Constrained Interpolated Profile (CIP) algorithm in order to solve accurately wave heights in far field as well as near field. The advantage of the CIP method was verified by the comparison of the computed results by the CIP and the Maker and Cell (MAC) method. The free surface flow simulation around Wigley hull was performed and compared with the experiment for the sake of the validation of the numerical method. The present numerical scheme was applied to the free surface simulation for various canal sections in order to understand the effect of the sectional shape of waterways on the ship waves. The wave heights on the side wall and the shape of the wave patterns with their characteristics of flow are discussed.

Identification of operating parameters in auto-discharging filter system for treatment of urban storm water (자동방류가 가능한 여과형 비점오염처리장치의 운전인자 도출)

  • Kim, Sun-Hee;Gwon, Eun-Mi;Pak, Sung-Soon;Joh, Seong-Ju;Lim, Chea-Hoan;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.377-386
    • /
    • 2010
  • To identify operating parameters of the up-flow filtering system, which is available to discharge filtering residue after the rain, developed for treatment of urban storm runoff, lab scale test was carried out. Removal efficiency of SS was 68.7%, 62.2%, and 58.6% at the area roading rate of 2.46m/h, 4.68m/h, and 10m/h, respectively, filtering device is desirable to operate at the lower than 4.68m/h of area roading rate to get higher level of 60% SS removal efficiency. The removal efficiency of SS was 57.1% ~ 68.7% at the raw water SS of 100mg/L ~ 600mg/L, and the SS in treated water was maintained at the constant level through the elapsed time. It is indicate that filtering device can guarantee a certain level of effluent water quality at various raw water quality. The removal efficiency of SS to the depth of filter media was 68.3%, 78.6% at the filter depth of 10 cm, 20cm respectively. The final treated water quality was showed 30.2mg/L of CODMn, 1.60mg/L of TN and 0.25mg/L of TP. The average removal efficiencies by filtering device developed in this research were recorded slightly lower levels than other research. The main reason of these results were the first, the filter depth of the media used in this test was shallow, the second, the kind of filter media in discharge port of residue. More research to kind of filter media, filter packing rate, select of media for residue discharge port should be go on to produce optimum operating condition. The result of this study would be valuable for the application of filtration device to control of urban storm water.

Relationship between Fishing Condition of Common Squid and Oceanic Condition in the East Sea (동해에서의 오징어 어황과 해황과의 관계)

  • Cho Kyu-Dae;Kim Sang-Woo;Kang Gi-Hong;Lee Chung-Il;Kim Dong-Sun;Choi Yun-Sun;Choi Kwang-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.61-67
    • /
    • 2004
  • This study described relationships between fluctuation of fishing conditions for common squid and oceanic conditions in the East Sea from 1990 to 1999. Annual catches of common squid have been higher since the late 1980s compared to the period of the late 1970s to the mid-1980s. These catches fluctuations might be related to the effect of regime shifts. Monthly catches of common squid appear the timing of a large catch from September to December and a poor catch from March to May. The monthly catches are also the highest in October and are the lowest in April. Annual stable fishing grounds for coefficient of variation below 1.0 are formed in waters around Guryongpo and Ullung Island Based on optimum water temperature for catch, $16^{\circ}C$, optimum water depth for catch shallow going north. It indicates that the optimum water depth of fishing work different of each area Fishing ground formation and horizontal water temperature appear the minimum $10{\sim}14^{\circ}C$ in April, the maximum $10{\sim}20^{\circ}C$ in October. If seem, that seasonal fluctuation of fishing ground is related to the extension of the Tsushima warm current in the East Sea.

  • PDF

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

Analysis of Physical Environmental Factors and the Structure of Fish Community in the Gapyeong Stream (가평천의 물리적 환경요인과 어류 군집구조 분석)

  • Kong, Dongsoo;Son, Se-Hwan;Kim, Jin-Young;Kim, Ah Reum;Kwon, Yongju;Kim, Jungwoo;Kim, Ye Ji;Min, Jeong Ki;Kim, Piljae
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.587-599
    • /
    • 2017
  • Physical environmental factors (water depth, current velocity and substrate) and fish community were surveyed in the Gapyeong stream, Korea. The fish group of Gapyeong Stream was divided into three types. Lithophilic fish, Koreocobitis rotundicaudata and Pseudopungtungia tenuicorpa preferred shallow depth, low-velocity current, and coarse bed condition, whereas Coreoleuciscus splendidus and Microphysogobio longidorsalis were adapted to high-velocity current and bed materials. Nektonic fish, Zacco koreanus and Zacco platypus appeared in a wide range of physical conditions. Intermediate fish, Hemibarbus longirostris, Pungtungia herzi and Coreoperca herzi adapted to moderate water depths and current velocities. Among them, H. longirostris and C. herzi were adapt to various bed materials. C. splendidus, M. longidorsalis and P. herzi showed high niche overlap for current velocity, water depth and substrate with Z. koreanus and Z. platypus. The occurrence of M. longidorsalis in a relatively low-velocity current compared to Z. koreanus and Z. platypus suggests that the current velocity act as a isolation factor for these species. The competition, isolation and character displacement among these species investigated detail in the future. Based on canonical correspondence analysis, the relative importance of each environmental factor was determined as substrate > water depth > current velocity.