• Title/Summary/Keyword: Shallow Water Condition

Search Result 179, Processing Time 0.026 seconds

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Numerical Simulation of Flow and Bed Change at the Confluence of the Geum River and Mihocheon (합류부에서 흐름 및 하상변동 수치모의 (금강과 미호천 합류부를 중심으로))

  • Jang, Chang-Lae;Kim, Jeongkon;Ko, Ick Hwan
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.91-103
    • /
    • 2006
  • The objective of this study is to analyze the characteristics of flow and bed change at the wide, shallow confluence of the Geum river and Mihocheon, which has different bed slope, height, and sediment concentration condition between the main channel and tributary. RMA-2 and SED2D were used to simulate flow and bed changes at the site. Flow simulations showed that the overall flow velocity, shear layer and vortex generated at the left bank of the confluence increase as the discharge was increased. Sediment transport simulations indicated that because of the high inflow sediment concentration from Mihocheon, sediment concentration in the main river increases after the confluence, the high sediment concentration band was kept along the shear layer boundary and the left bed was aggraded after confluence.

  • PDF

A General Formula of Total Sediment Transport Rate for Waves and Currents (범용 파랑.흐름 공존시의 비점착성 퇴적물이동 예측식)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.462-469
    • /
    • 2009
  • This study suggests a general formula of non-cohesive sediment transport rates for waves and currents which is also valid for wave only or current only condition. On-offshore sediment transport rates with the second order Stokes wave in the shallow water are calculated as the pickup rate times the distance. The formula depicts reasonably that high waves move material offshore, and low waves move material onshore. Also the formula, as is the case the waves with long period tend to move material onshore, shows good results.

Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I) (유한요소법을 이용한 해수유동 해석 (I))

  • 권순국;고덕구;조국광;김준현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

A Study on Shallow Water Propagation Model with 2-layered Sediment (2개의 해저층으로 구성된 천해 음파전달에 관한 모델 연구)

  • 김영선;김성부
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.71-80
    • /
    • 2001
  • In order to consider the sediment layer's effect to total acoustic field, we composed a 3 layered fluid model of 2 sediment layers by adding an additional layer to the Pekeris model and found solutions by using Green's function, boundary conditions and Sommerfeld radiation condition. The modes were divided into discrete modes and virtual modes, and confirmed that the characteristic equation to find discrete modes was same as that of Tolstoy and Clay for normal modes. Also, we confirmed that under similar conditions the 3 layered model showed same results as that of Pekeris model. We believe this 3 layered model can be used to study the sediment's effect on the virtual mode of near field.

  • PDF

Petrochemical Study of the Gadaeri Granite in Ulsan Area, Kyeongsang Province (경상남도 울산지역 가대리화강암에 대한 암석화학적 연구)

  • Choi, Seon-Gyu;Wee, Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.459-467
    • /
    • 1994
  • The Gadaeri granite near Ulsan mine is an oval-shape isolated granitic body, and is genetically related to the iron-tungsten mineralization. The Gadaeri granite exhibits calc-alkaline and I-type characteristics, and generally shows the micrographic texture which indicates the shallow depth of emplacement. Consideration of the stratigraphic thickness of Ulsan formation and minimum-melt compositions suggests that the bulk magma crystallized at pressure of 0.5~2.0 kbar under water saturated condition. The evolutionary trend observed in the studied rocks represents that feldspar fractional crystallization has been a major magmatic process at the Gadaeri granite pluton. Different chemical characteristics between the Gadaeri and the Masan-Kimhae granites cannot be explained by fractional crystallization or different degrees of partial melting, and it reflects that the magma source for Gadaeri granite was different from that of the Masan and Kimhae granites.

  • PDF

Applicability of Boussinesq Models for Wave Deformation and Wave-Induced Current (파랑변형 및 해빈류에 대한 Boussinesq 모형의 적용성 검토)

  • Cho, Young-Jun;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.185-193
    • /
    • 2010
  • In the present study, wave deformation and wave-induced current were calculated under the regular wave conditions using the Boussinesq model. The model results of the wave deformation showed good agreements with the preceeding laboratory experiments of others. The wave-induced current of the fully developed sea state was calculated. For field application of model, the preceeding field data by others in the real scale of the water area were compared, the numerical result of wave deformation showed a relatively good agreement with the field data. Although the numerical result of wave-induced current was underestimated over the longshore bar developed area, the Boussinesq model is generally suitable to predict the wave-induced current.

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.

The Solution of Upward Salt Diffusion in Floodeol Soil using Laplace Transformation (침수상태(湛水狀態)에서 토양(土壤) 염분(鹽分) 확산(擴散) 상승(上昇) 해석(解析)에 Laplace변환 이용)

  • Oh, Yong-Taeg;van der Molen, W.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.233-240
    • /
    • 1995
  • Fick's diffusion equation was transformed into algebraic subsidiary equation with its initial and boundary conditions through Laplace transformation, and the subsidiary equation was transformed back on the basis of Burington's table of inverse transformations so that it became the solution of Fick's equation. The initial and boundary condition was for upward diffusion of salts into flooding water of constant depth from uniform polder soil of infinite depth containing constant concentration of salt. The derived solution was tested through comparison for its conformability with other solutions of simpler initial and boundary conditions. The importance of shallow transplanting of rice seedlings and salt removing by growing rice was mentioned on the basis of very slow desalting rate by diffusion calculated from the derived solutions.

  • PDF

Tide and tidal current around the sea route of Jinhae and Masan passages (진해 및 마산항로 주변해역의 조석·조류특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • In order to understand the tide and current around the sea route of Jinhae and Masan passages, tide measurement and 2D numerical model experiments of tidal current and residual flow were carried out. Tide is composed of 84% of semi-diurnal tide, 11% of diurnal tide and 4% of shallow water tide, respectively. Phase lags of the major components for the tide around the study area have little differences. The flows are reversing on the whole, but have rotational form around Jamdo Island, south of Masan passage in spring tide and Ungdo Island, north of Masan passage in middle and neap tide. Current flows the speed of 50 cm/s in the sea areas near small islands, 5 cm/s in Jinhae harbor, Hangam bay and near Jinhae industrial complex and 20-30 cm/s in Jinhae passage, Budo channel and Masan passage. Tide-induced topographical eddies are formed near small islands, but few eddies exist and the flow rate of less than 5 cm/s tidal residual current formed in Jinhae and Masan passages. The flows in Jinhae and Masan passage give a good condition for a passage into Jinhae and Masan harbor.