• Title/Summary/Keyword: Shaky-aligned EPD

Search Result 4, Processing Time 0.018 seconds

Fabrication of YBCO Superconducting Thick Film by Use of Lateral Shaky Field Assisted EPD Method (측면진동보조전계 전기영동 전착방식을 적용한 YBCO 초전도 후막의 제작)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1041-1046
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field, so called Shaky Alternating Assisted Field, caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature (Tc,zero = 90 K) and critical current density (2354 A/$\textrm{cm}^2$), Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

Superconducting Properties of Shaky-aligned EPD Thick Film of YBCO Tape (진동정렬 EPD YBCO 후막테이프의 초전도 특성 개선)

  • Soh, Dea-Wha;Cho, Yong-Joon;Park, Seong-Beom;Jeon, Yong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.111-114
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature ($T_{c,zero}$ : 90 K) and critical current density ($2354\;A/cm^2$). Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

  • PDF

Electrophoretic Deposition Technique by Vertical Lateral Assisted Field (측면수직보조전계에 의한 전기영동전착 기술)

  • Soh, Dae-Wha;Jeon, Yong-Woo;Park, Jeung-Cheul;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.82-85
    • /
    • 2003
  • This dissertation describes an optimization method for fabricating thick films with superconducting YBCO powders by electrophoresis technique. The lateral alternating applied voltage caused to shake the superconducting powder vertically to the deposition field during the process of the oriented deposition so that it was deposited along the c-axis on the silver tape with shaky-aligned EPD. As the result, the optimized thin film fabrication method was obtained to get more dense and uniform surface morphology as well as the improved critical current density. For commercial utilization and efficiency, in this dissertation, alternating voltage of 25-120 V/cm in frequency of 60Hz was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and $T_{c.zero}$ of 90 K and the critical current density of $3419A/cm^2$.

  • PDF

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 전기영동전착 초전도후막)

  • 전용우;소대화;조용준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.679-685
    • /
    • 2004
  • Although the electrophoretic deposition method has the advantage of simple processing procedure, less fabrication facilities, and easier control for deposition thickness and wire length, providing economical and technical merits, it also has the disadvantages of cracking and porosity phenomena, requiring an improved processing method for higher particle density and constant particle orientation. we have developed an optimization method to increase the particle density and to unify its orientation, and have performed a study to overcome the cracking and porosity problems in the fabricated superconductor. In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternate voltage vertically has been developed for the first time and applied to the electrophoretic deposition process. The applied alternate electric field caused a force to be exerted on each YBCO particle and resulted in a rotation of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. We name this process as the shaky-aligned electrophoretic deposition method. For commercial utilization and efficiency, in this dissertation, alternating voltage of 60 Hz and 25 ∼ 120 V/cm was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and Tc,zero of 90 K and the critical current density of 3419 A/$cm^2$.