• Title/Summary/Keyword: Shaking table

Search Result 600, Processing Time 0.034 seconds

Shake Table Tests for the Evaluation of Seismic Behavior of RC piers (RC 교각의 내진거동 평가를 위한 진동대 실험)

  • Chung, Young-Soo;Shim, Chang-Su;Park, Chang-Kyu;Park, Chang-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.85-88
    • /
    • 2006
  • This paper deals with shaking table tests on RC piers to evaluate the seismic performance under near fault motion. Small scale models were fabricated and axial force was applied by introducing prestress at the centroid of the column section. Mass effect of the superstructures was simulated by mass frame which was linked with a pier model by steel bars because of the limited payload of shaking table. Friction of the mass frame when it moves was minimized by special details and it was proved before tests. Scale factor of the RC piers was 4.25. Main parameters of the test were details of reinforcements. After verifying the results of shaking table tests, seismic performance was evaluated by increasing the acceleration of the near fault motion.

  • PDF

Discussion of Dynamic Fluid Pressures of a Submerged Deposit of Sand (수중 모래지반의 동수압 발현)

  • Kim, Ha-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.546-551
    • /
    • 2006
  • This study is concerned with the dynamic behaviour of a fluid layer and a submerged deposit of sand in a rigid rectangular container when subjected to horizontal shaking. Detailed analyses are made of the interaction between the fluid pressure field and the excess pore pressure changes in the sand deposit, in terms of finite-element modelling as well as of two-layer fluid theory. It is shown that the predicted performance compares favourably with what has been observed in centrifugal shaking-table testing on submerged sand deposits.

  • PDF

Shaking Table Test for Seismic Performance Evaluation of Non-Seismic Designed Wall-Type Apartment (내진설계 되지 않은 공동주택의 진동대 실험에 의한 내진성능 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.721-728
    • /
    • 2006
  • Earthquakes are reported thai building structures have been colossal damaged, but before 1988 designed structures which were not applicate seismic design code have no seismic performance. Especially, for the apartment structures were indicated that it have no resist wall element of earthquake before 1988 designed structures. We have to evaluate for seismic performance this structures, therefore it will be retrofitted for seismic index sufficient structures. We performed seismic performance evaluation for model structures by MIDAS which is general structure analysis software. In this study, it was performed shaking table test to evaluate model structure which is reinforcement concrete and 5 floors for seismic performance index. We made specimens by similar's law and tested shaking table test. In the shaking table test it is not performed prototype model test because of space and equipment condition. So we had made scale-down model for 1/5 by similar's law. That's why it needs for the evaluation of performance. However, it is not possible to do an experiment of prototype owing to the shortage of space and the limit of an experimental instrument in the shaking table test. Then, modeling and reducing the part of prototype do the experiment. In this experiment a shaking table test is done and seismic performance of model structures is evaluated by using similitude laws for scale down specimen. As a result it is proved that non-seismic design structures need to retrofit since seismic performance shows life safe grade in 0.12g of an earthquake.

Experimental and numerical verification of hydraulic displacement amplification damping system

  • Chung, Tracy Sau-Kwai;Lam, Eddie Siu-Shu;Wu, Bo;Xu, You-Lin
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Hong Kong is now recognized as an area of moderate seismic hazard, but most of the buildings have been designed with no seismic provision. It is of great significance to develop effective and practical measures to retrofit existing buildings against moderate seismic attacks. Researches show that beam-column joints are critical structural elements to be retrofitted for seismic resistance for reinforced concrete frame structures. This paper explores the possibility of using a Hydraulic Displacement Amplification Damping System (HDADS), which can be easily installed at the exterior of beam-column joints, to prevent structural damage against moderate seismic attacks. A series of shaking table tests were carried out with a 1/3 prototype steel frame have been carried out to assess the performance of the HDADS. A Numerical model representing the HDADS is developed. It is also used in numerical simulation of the shaking table tests. The numerical model of the HDADS and the numerical simulation of the shaking table tests are verified by experimental results.

Shaking Table Model Test of Shanghai Tower

  • Lu, Xilin;Mao, Yuanjun;Lu, Wensheng;Kang, Liping
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • Shaking table test is an important and useful method to help structural engineers get better knowledge about the seismic performance of the buildings with complex structure, just like Shanghai tower. According to Chinese seismic design guidelines, buildings with a very complex and special structural system, or whose height is far beyond the limitation of interrelated codes, should be firstly studied through the experiment on seismic behavior. To investigate the structural response, the weak storey and crack pattern under earthquakes of different levels, and to help the designers improve the design scheme, the shaking table model tests of a scaled model of Shanghai tower were carried out at the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. This paper describes briefly the structural system, the design method and manufacture process of the scaled model, and the test results as well.

Shaking Table Test of 1/3-Scale 3-Story Sam-Hwan Camus Precast Concrete Model (1/3축소 3층 삼환까뮤 P.C 모델의 진동대 실험)

  • 이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.140-154
    • /
    • 1992
  • The objective of the research stated here was aimed at providing the information needed to establish the Korean Seismic Design Code Recommendations and Guides for precast concrete (P.C) large panel apartment buildings. This was accomplished by investigation and analysis of the response of P.C large panel structures subjected to shaking table excitation simulating earthquake ground motion. one of the test specimens used was 1/3-scaled 3-story box P.C model provided by Sam-Hwan Camus Corporation. The 4m $\times$4m shaking table was used to simulate the earthquake ground motion. the employed input accelerogram was the one recorded as Taft N21E component and the peak ground acceleration(PGA) was scaled depending on the desired level of seismic severity and the time according to dynamic similitude rule. Based on results obtained from shaking table test of this P.C model, the following conclusions were drawn . (1) As far as test specimen is concerned, the seismic safety factors turns out to be 7~8. (2)P.C model has damping ratio of about8% which is twice larger than in-situ R.C. structure. And (3)this model has global displacement ductility ratio of 2~3 through the energy dissipation by opening and sliding of joints.

  • PDF

Wind Response Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 풍응답 제어성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Lee, Sang-Hyun;Park, Eun-Churn;Kim, Hong-Jin;Jo, Bong-Ho;Jo, Ji-Seong;Kim, Dong-Young;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.189-194
    • /
    • 2007
  • An experimental real-time hybrid method, which implements the wind response control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an wind-load input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

  • PDF

Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction (지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링)

  • Oh, Man-Kyo;Kim, Seong-Hwan;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

Vibration Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 진동제어 성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.485-495
    • /
    • 2008
  • An experimental real-time hybrid method, which implements the vibration control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and sinusoidal waves input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.