• 제목/요약/키워드: Shaking table

검색결과 604건 처리시간 0.025초

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

직사각형 액체저장탱크의 동적 응답특성에 관한 진동대 실험 (Shaking Table Test of a Rectangular Liquid Storage Tank)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.209-214
    • /
    • 2000
  • Shaking table tests were performed to investigate dynamic behavior of a three dimensional flexible rectangular liquid storage tank. Response characteristics to the three components of translational motion and three component of rotational motion were studied. The aluminium tank was exposed to the shaking high enough to make it behave in nonlinear range. Only very limited amount of the data have been processed yet. Very interesting phenomena on the effects of non-symmetry have been observed and presented. Test results that show nonlinear behavior under the high intensity shaking are reported.

  • PDF

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.

Dynamics and Control of 6-DOF Shaking Table with Bell Crank Structure

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui;Park, Jong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.296-301
    • /
    • 2005
  • This paper describes the kinematics, dynamics and control of a 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. In this shaking table, the bell crank mechanism is used to reduce the amount of space needed to install the shaking table and create horizontal displacement of the platform. In kinematics, joint design is performed using $Gr{\ddot{u}}bler's$ formula. The inverse kinematics of the shaking table is discussed. The derivation of the Jacobian matrix is presented to evaluate singularity conditions. Considering the maximum stroke of the hydraulic actuator, collision between links and singularity, workspace is computed. In dynamics, computations are based on the Newton-Euler formulation. To derive parallel algorithms, each of the contact forces is decomposed into one acting in the direction of the leg and the other acting in the plane orthogonal to the direction of the leg. Applying the Newton-Euler approach, the solution of inverse dynamics is almost completely parallel. Only one of the steps-the application of the Newton-Euler equations to the platform-must be performed on one single processor. Finally, the efficient control scheme is proposed for the tracking control of the motion platform.

  • PDF

기초격리된 구조물의 내진성능평가를 위한 실험기법 (Experimental Techniques for Evaluating Seismic Performance of Base-Isolated Structure)

  • 윤정방;정우정;김남식;김두훈
    • 한국지진공학회논문집
    • /
    • 제1권4호
    • /
    • pp.45-58
    • /
    • 1997
  • 본 연구에서는 다양한 입력지진에 대해서 기초격리된 구조물의 내진성능 평가를 위해서 진동대실험과 유사동적실험을 수행하였다. 본 논문의 목적은 다음과 같다. 하나는 진동대실험을 통하여 강한 지진의 발생시 저층의 구조물에 대한 기초격리시스템의 내진성능을 평가하는 것이고 다음으로는 진동대실험결과와 비교하여 기초격리시스템에 대한 유사동적실험기법의 적용성 및 신뢰성을 증명하는 것이다. 진동대실험은 적층고무받침을 이용하여 기초격리된 1/4 축소모형의 3층 철골구조물의 대상으로 하였다. 유사동적실험에서는 부분구조기법을 사용하여 단지 기초격리시스템만을 대상으로 실험되며 전체구조물의 지진응답은 컴퓨터 내에서 직접적분을 이용하여 계산된다. 진동대실험결과와 비교할 때 부분구조기법을 사용한 유사동적실험은 기초격리된 구조물의 동적응답 평가에 매우 효과적임을 알 수 있었다. 또한 대부분의 하중하에서 기초격리장치가 사용된 구조물의 경우에는 지진응답이 현저히 감소하는 것을 알 수 있었으나, 장주기파의 성분이 강한 지반운동에 대해서는 감소의 폭이 크지 않았다. 그러나 여러 지반조건에 대하여 UBC 시방서에서 규정한 설계하중에 대하여는 진동감소효과가 우수함을 보인다.

  • PDF

소형선형 평면뼈대모형의 진동대실험을 통한 하이브리드실험 기법의 검증 (Verification of Hybrid Structural Test Technique by Shaking Table Test of a Linear 2-Dimensional Frame Model)

  • 조성민;최인규;정대성;김철영
    • 한국지진공학회논문집
    • /
    • 제14권6호
    • /
    • pp.33-43
    • /
    • 2010
  • 본 논문은 지진에 의한 구조물의 거동을 평가하기 위한 실험방법 중 최근 국내에 도입되어 연구되고 있는 하이브리드실험에 대한 시스템을 구축하고, 그에 따른 모델개발과 하이브리드실험을 실시하여 하이브리드실험기법의 타당성과 정확도를 평가하기 위함이다. 이를 위해 NEESgrid의 미니모스트 시스템을 벤치마킹하여 여건에 맞게 수정, 보완하였으며 2차원 평면뼈대모형을 개발하여 실험에 적용하였다. 그리고 하이브리드실험 결과의 평가를 위해 국내에서는 거의 시도되지 않았던 진동대실험과 비교를 함으로써 결과의 신뢰도를 높였다. 진동대실험에는 하이브리드실험과 동일한 크기의 실물모형을 제작, 실험하여 크기효과의 영향을 최소화하였다. 두 실험의 결과는 거의 비슷한 것으로 나타나 하이브리드실험이 진동대실험을 대체할 수 있을 것으로 판단된다.

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.

철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구 (A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models)

  • 양희관;서주원;조남소;장승필
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

진동대를 이용한 구조물의 내진실험시 잡음의 영향에 관한 고찰 (Noise Effects on Shaking Table Test of Structures)

  • 최인길
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.312-319
    • /
    • 1998
  • The effect of noise on the input motion for the seismic test of structures using shaking table was studied. Table motions usually contain high frequency contents which influence the PGA of input motions. It was shown that the noise influenced PGA much with minor changes in high frequency contents. The Butterworth bandpass filter can be effectively used. The adequacy of the table motion should be judged based on both the frequency contents and the PGA.

  • PDF

적층 구조물의 동적 거동에 관한 실험적 연구 (Experimental Study on the Dynamics of Piled Multi- Block Systems)

  • 김재관;채윤병;조문형
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.275-283
    • /
    • 2002
  • In this study, the shaking table tests of block systems on the rigid base have been performed to identify the seismic response and the dynamic behavior of the piled multi-block systems. To understand the characteristics of seismic response of piled multi-block systems, it is necessary to understand the dynamic behavior of single block system. Therefore, the skating table test of the single block system has been performed first. Moreover, by performing the shaking table tests of multi-block systems, the characteristics of dynamic behavior of piled multi-block systems have been analyzed. Also in this study, the distinct element method(DEM) has been used to analyze the nonlinear behavior of the piled multi-block systems. The results of the shaking table tests show that the response of the multi-block systems is very complicated. But by using DEM, the behavior of piled multi-block systems has been predicted and described well.

  • PDF