• Title/Summary/Keyword: Shaft vibration

Search Result 651, Processing Time 0.031 seconds

A Case Study of Deep Shaft Blasting for Reducing Ground Vibration in Urban Area (도심지의 대심도 수직구 발파에서 지반진동저감 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Jung, Min-Sung;Lee, Hyeung-Jin;Na, Gyeong-Min
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Domestic electronic detonators are used widely in many quarry and construction sites since its launch at 2013. In the case of SOC projects conducted in the city, most of them are designed in high-depth to reduce complaints. The high-depth excavation needs a long construction period and huge cost for building shaft and ventilation hole. Mechanical excavation method is applied when safety things are located nearby the site. Solidity of rock and machine's performance affect on the method's efficiency. So as the efficiency is getting lower, the construction period is extended, and the cost is increases as well. This case study is about changing the machine excavation method to the blasting method which is electronic detonator applied at the shaft construction site in the city. This is an example of using electronic detonators on the construction site in reducing blast-noise and vibration while meeting environmental regulatory standards.

A Study on Shaft Dynamic Characteristic for G/T 250TON Double-Ended Car-Ferry (G/T 250톤 양방향 차도선 축계의 동특성에 관한 고찰)

  • Kang, Byoung-Mo;Oh, Young-Cheol;Bae, Dong-Gyun;Seo, Kwang-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • The car ferry operating between the mainland and the island plays an important role on transportation of goods and passengers. Therefore, the improvement of efficiency and safety as well as economic factor are importantly considered in the development process of car ferry. Double-ended car ferry is already popularized because of its economic feasibility and convenience for passenger in Europe and developed countries, and the demand is booming in domestic. In this paper, dynamic characteristics of propeller shaft and strength in double-ended car ferry are analyzed using campbell diagram and modal analysis. Based on the analysis of dynamic characteristics, resonant phenomenon and critical speed are stable when occurring the propeller shaft vibration due to forward and reverse propeller shaft working.

DEVELOPMENT OF AN OPTIMIZATION TECHNIQUE OF A WARM SHRINK FITTING PROCESS FOR AN AUTOMOTIVE TRANSMISSION PARTS

  • Kim, H.Y.;Kim, C.;Bae, W.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.847-852
    • /
    • 2006
  • A fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that applies heat in the outer diameter of a gear to a suitable range under the tempering temperature and assembles the gear and the shaft made larger than the inner radius of the gear. Its stress depends on the yield strength of a gear. Press fitting is a method that generally squeezes gear toward that of a shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of a shaft. A warm shrink fitting process for an automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by the process produced dimensional change in both outer diameter and profile of the gear so that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of a warm shrink fitting process in which design parameters such as contact pressure according to fitting interference between outer diameter of a shaft and inner diameter of a gear, fitting temperature, and profile tolerance of gear are involved. In this study, an closed form equation to predict the contact pressure and fitting load was proposed in order to develop an optimization technique of a warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained from theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with the results.

NUMERICAL STUDY WITH VENT SHAFT POSITION IN UNDERGROUND STATION (대심도 지하정거장에서 수직구 위치에 따른 수치적 연구)

  • Oh, Hyun-Joo;Shin, Dea-Yong;Lee, Sang-Gun;Kim, Dong-Hyun;Kim, Charn-Jung
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • When a high-speed train passes an underground station, large pressure waves are generated due to the piston effect. These pressure waves can cause the problems of vibration and noise as well as the ear discomfort of passengers at the underground station. This work numerically analyzed the pressure wave generation and propagation in an high-speed railway underground station, and the optimal location for vent shafts was studied to improve the passenger comfort by reducing the magnitude of the pressure wave and its rate of change. The evolution of pressure field in the underground station was calculated using a CFD(Computational Fluid Dynamics) software(Fluent), where the axis-symmetric two-dimensional model verified by Wu was used. And this study is applied to modelling of the underground station and the tunnel from Daegok station A-line of GTX(Great Train Express). From the result, we can have a conclusion that the role of vent shafts respectively were different according to the position in and out the underground station. Also Vent shaft in the underground station widely reduced pressure magnitude. And vent shaft out underground station reduced initial pressure peak value. Double vent shafts installed at tunnel toward station entrance and inside of the tunnel are the most efficient to reduce pressure. and pressure reduction increases according to the number of vent shaft.

The Bearing Capacity Comparison of Drilled Shaft by the Static Load Test and the Suggested Bearing Capacity Formulas (현장타설말뚝의 정재하시험에 의한 지지력과 이론식에 의한 지지력과의 비교)

  • 천병식;김원철;최용규;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2003
  • The driven pile has environmental problems such as vibration and noise. Especially, if the site consists of gravel, cobble and weather rock, the driven pile can not be applied. Therefore, the application of the drilled shafts is increasing in Korea. However, the bearing capacity values by the suggested theoretical formulas are generally considered too conservative. In this paper, static load tests for the rock socketed drilled shaft at Gwangandaero and Suyeong3hogyo are performed and in order to estimate the side friction of the shaft, strain gauges are applied. The bearing capacities from the field test data and the bearing capacity values by the theoretical formula are compared. Even the static load tests didn't reach to the ultimate bearing capacity condition, and all the measured bearing capacity values were higher than those by the theoretical formulas. The field data also showed that the major bearing capacities were not due to end bearings but side friction resistances. Based on the above results, several suggestions are proposed for the drilled shaft design.

Development of Linear Magnetic Actuator for Active Vibration Control (능동진동제어를 위한 선형 자기 액추에이터 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Kim, Ki-Young;Lee, Han-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.667-672
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

Experimental Study on the Reduction of Vibration of Gear Trains Due to a One-Way Clutch (원웨이클러치의 기어열 진동감소 효과에 관한 실험적 연구)

  • Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1477-1482
    • /
    • 2011
  • Using a one-way clutch has been reported to be very effective in reducing the vibration of gear pairs. However, study on the effect of using a one-way clutch has been based on numerical analysis only, and no experimental study has yet been executed. Hence, in this study, experiments to verify the effectiveness of using a one-way clutch to reduce the torsional vibration have been executed. Dynamic responses over a wide range of speeds have been compared for various numbers and positions of the clutch. The results of the experiments verified that a one-way clutch is effective in reducing the vibration by decreasing the tooth mesh vibration as well as the vibration transmitted from the input shaft.

Analysis of Spectral Fatigue Damage of Linear Elastic Systems with Different High Cyclic Loading Cases using Energy Isocline (에너지 등고선을 이용한 고주파 가진 조건들에 따른 선형 시스템의 피로 손상도 분석)

  • Shin, Sung-Young;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.840-845
    • /
    • 2014
  • Vibration profiles consist of two kinds of pattern, random and harmonic, at general engineering problems and the detailed vibration test mode of a target system is decided by the spectral condition that is exposed under operation. In moving mobility, random responses come generally from road source; whereas the harmonic responses are triggered from rotating machinery parts, such as combustion engine or drive shaft. Different spectral input may accumulate different damage in frequency domain since the accumulated fatigue damage dependent on the pattern of input spectrum in high cyclic loading condition. To evaluate the sensitivity of spectral damage according to different loading conditions, a linear elastic system is introduced to conduct a uniaxial vibration testing. Measured data, acceleration and strain, is analyzed using energy isocline function and then, the calculated fatigue damage is compared by different loading cases, random and harmonic.

Vibration Evaluation of Concrete Mixer Reducer (콘크리트 믹서 감속기의 진동 평가)

  • Cho, Yonsang;Bae, MyoungHo
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • The differential planetary gear reducer as a main component of the concrete mixer driving mechanism requires a strong torque to mix concrete compounds. As this component is currently dependent on imports, it is necessary to develop it by conducting a study on vibration analysis and the resonance problem. The noise and vibration of a concrete mixer reducer increase owing to the transmission error of planetary gears, and the damage of components occurs owing to the problems in design and production. In this study, the tooth-passing frequency is calculated to evaluate the noise and vibration of a mixer reducer, and a fast Fourier transform (FFT) analysis is conducted through a vibration test using an acceleration sensor. The vibration of the reducer is measured at three points of input and output of the shaft and planetary gear housing with fixed and variable revolutions per minute. The operating conditions of gears and bearings are evaluated by performing the FFT analysis, and the resonance problem is verified. The results show that No. 1 pinion and ring gears revolve disproportionately. The amplitude values appear high, and the wear of tooth faces occur in tooth-passing frequencies and harmonic components of No. 1 and No. 2 pinion-ring gears. Therefore, we conclude that design changes in the reducer and a correction of tooth profiles are required.

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF