• Title/Summary/Keyword: Shaft Current

Search Result 159, Processing Time 0.024 seconds

A Study on the Practical Cathodic Protection Design for the FRP Fishing Boat and It’s Application Scheme (FRP 어선 2종 스테인리스강 축의 음극방식을 위한 실용설계 및 적용방안 연구)

  • Gang, Dae-Seon;Kim, Gi-Jun;Lee, Myeong-Hun;Park, Jeong-Dae;Kim, Tae-Eon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.21
    • /
    • pp.66-77
    • /
    • 2006
  • Stainless steel has been stably used closed by passivity oxidation films(Cr₂O₃) is made by neutral atmospheric environment. However, passivity oxidaton films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having galogen ion like Cl‾, then, localization corrosion comes to occur Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc., According to the comparison and analysis of Stainless steel 304 was severely corroded, but, protected shaft specimen was not totallay corroded. This result is assumed to be made by the facts that anodic reaction, Fe → fe²++ 2e¯, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers

  • Jeong, Jinyong;Lee, Intaek;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • We analyzed the destruction patterns of a turbo-molecular pump (TMP) resulting from its sudden exposure of a foreline to the atmospheric pressure due to a destruction of the foreline connecting clamp of an ICP dry etcher for 300 mm wafers during high-vacuum operation ($5{\times}10^{-6}$ Torr). Unlike in the case of view port's breakage, the TMP's rotor module was crashed inside the chamber. The primary damage resulted from the collision of the blades and stators, and the secondary damage resulted from the breaking of the rotor - driving shaft assembly. The fixing screws of the rotor and axial shaft were bent and broken when the TMP controller output the maximum current even after the crash event. Electrical power consumption analysis of the TMP power controller confirmed it. The stress distributions were analyzed by a finite element method using CFD-ACE+ multi physics software. Rotating inertia of each parts and kinetic energies were calculated as well. 68% of the rotational kinetic energy is deposited by the rotor - shaft module.

A Case Study of a Drilled Shaft Design and Construction of Buildings (건축구조물에서 현장타설말뚝에 의한 대형기초의 설계 및 시공사례)

  • Joeng, Gyeong-Hwan;Jung, Dong-Young;Kim, Young-Man;Jung, Sun-Tae;Kim, Dong-Jun;Kim, Min-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.554-563
    • /
    • 2009
  • The trend of current urban redevelopment and new city development project shows that the superstructure of building is getting larger and higher in consequence of a limited plottage condition. For this reason, it is definitely required to extend pile diameter and install more deep foundation(Mega foundation) to support superstructure. The existing precast pile construction method causes construction-related problems such as increasing quantities, difficulty of storage & transportation material and decreasing design load while construct pile in deep foundation. The drilled shaft method has applied to minimize those problems. This article will be presented construction case study of design & construction of R.C.D method for a large building foundation work on the inside and outside of the country.

  • PDF

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

Sensorless Speed Control of Direct Current Motor using Current Error Compensation (전류오차보상에 의한 직류전동기의 센서리스 속도제어)

  • 함형철;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.930-936
    • /
    • 2003
  • A new method of direct current motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference, the rotor approaches to the model speed, that is, reference value. The performance of direct current motor drives without speed sensor is generally poor at very low speed. However, in this system, it is possible to obtain good speed performance in the low speed range.

Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming (3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가)

  • Son, S.E.;Yoon, J.S.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

Self-Tuning Control of SRM for Maximum Torque with Current and Shaft Position Feedback

  • Seo Jong-yun;Yang Hyong-yeol;Kim Kwang-Heon;Lim Young-Cheol;Cha Hyun-Rok;Jang Do-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.351-354
    • /
    • 2001
  • In this paper, we present self-tuning control of switched reluctance motor for maximum torque with phase current and shaft position sensor. Determination method of turn-on/off angle is realized by using self-tuning control method. During the sampling time, micro-controller checks the number of pulse from encoder and compare with the number of pre-checked pulse. After micro-controller calculates between two data, it moves forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, the turn-on angle automatically moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moved automatically to obtain the maximum torque. The experimental results are presented to validate the self-tuning algorithm.

  • PDF

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Design and Manufacturing Characteristics of Eco-Friendly Wood Street Lamp (친환경 목재가로등의 디자인 및 제조특성)

  • Kim, Jong-In;Jung, Su-Young;Won, Kyung-Rok
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.4
    • /
    • pp.345-352
    • /
    • 2014
  • This study was carried out to develop eco-friendly wood street lamp (EFWSL) by using wood resources stacked in the forests after tree tending operations which were mostly abandoned, but economical as renewable wood resources for developing the wood coated street lamps with the effects of cost reduction and their attractive appearances. This study has led to the development of key compact structures of street-lighting wood poles (shaft) using laminated timber. The core technique in this study is related with producing the more stable wood poles (shaft) with the hole inside than wood poles exposed under the natural environment through applicable process to protect the wood from bursting and splitting. We also comprehensively developed the method to conserve the timber durability of wood shaft and connect the wood shaft with groove, race way to be located in the groove, locking ring, current stabilizer connected to the groove and luminaire support arm, base and hand-hole which was partly used in combination with steel materials and wood. Also we increased the utilization of abandoned and stacked woods after thinning in the forests such as Pinus densiflora, Larix leptolepis, and Pinus koraiensis plantations by maximizing the value of these natural wood resources as main materials of eco-friendly street lightings with the effects of cost reduction and attractive appearances and also the expectation of advertising effects of street lightings developed in this study.

  • PDF

A Study on Fire Features of Double-Skin Facade Structure by Using Fire Simulation (FDS) (화재 시뮬레이션(FDS)을 이용한 이중외피 구조의 화재 특성에 관한 연구)

  • Gu, Seon-Hwan;Kim, Hyun-Ho;Song, Young-Joo
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • This study aims to address the fire characteristics of Double-skin facade using the Fire Dynamics Simulator (FDS). To end this, Double-skin facade was classified into the four structures, that is Box, Shaft-box, Corridor, Multistory, through PyroSim program which was based on FDS, and further each structure of fire characteristics were analyzed numerically as well as comparatively in the current study. This study also examined smoke movement, smoke density, smoke detectors, and visibility in order to closely identify the each structure of fire characteristics. The results of the study discovered that the Box structure did not significantly affect smoke which was rising in the other rooms, except for the fire room whereas the Corridor structure had positive effects on Double-skin facade horizontally. In addition, the Shaft-box structure showed the fastest vertical movement by means of the shaft, on the other hand, rising smoke influenced the other rooms as well. The Multistory structure along with rising smoke had a great impact on the other divided rooms in a vertical way.