• Title/Summary/Keyword: Shading ratio

Search Result 130, Processing Time 0.026 seconds

Case Studies on Space Zoning and Passive Façade Strategies for Green Laboratories

  • Kim, Jinho
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.41-52
    • /
    • 2020
  • Laboratory buildings with specialized equipment and ventilation systems pose challenges in terms of efficient energy use and initial construction costs. Additionally, lab spaces should have flexible and efficient layouts and provide a comfortable indoor research environment. Therefore, this study aims to identify the correlation between the facade of a building and its interior layout from case studies of energy-efficient research labs and to propose passive energy design strategies for the establishment of an optimal research environment. The case studies in this paper were selected from the American Institute of Architects Committee on the Environment Top Ten Projects and Leadership in Energy and Environmental Design (LEED) certified research lab projects. In this paper, the passive design strategies of space zoning, façade design devices to control heating and cooling loads were analyzed. Additionally, the relationships between these strategies and the interior lab layouts, lab support spaces, offices, and circulation areas were examined. The following four conclusions were drawn from the analysis of various cases: 1) space zoning for grouping areas with similar energy requirements is performed to concentrate similar heating and cooling demands to simplify the HVAC loads. 2) Public areas such as corridor, atrium, or courtyard can serve as buffer zones that employ passive solar design to minimize the mechanical energy load. 3) A balanced window-to-wall ratio (WWR), exterior shading devices, and natural ventilation systems are applied according to the space programming energy requirements to minimize the dependence on mechanical service. 4) Lastly, typical laboratory space zoning categories can be revised, reversed, and even reconfigured to minimize the energy load and adjust to the site context. This study can provide deep insights into various design strategies employed for construction of green laboratories along with intuitive arrangement of various building components such as laboratory spaces, lab support spaces, office spaces, and common public areas. The key findings of this study can contribute towards creating improved designs of laboratory facilities with reduced carbon footprint and greenhouse emissions.

An Evaluating of Daylighting Performance by Venetian Blind Shapes Type Change - Centre on Radiance Program (베네치안 블라인드 슬랫각도 형태변화에 따른 주광성능에 관한 연구 - Radiance Program 중심으로)

  • Lim, Tae Sub;Park, Jong Myung;Lim, Jung Hee;Kim, Byung Seon
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Current Architectural Facade Designs have been trending to increased glass areas resulting in increasing impact on interior lighting and daylighting. In regards to indoor environmental quality, the increase in window space has a large impact on the daylighting received which ultimately impacts the liveability of a space. Especially when considering seasons, in the summer, excessive daylighting can result in glare as well as put an increased load in conditioning the air space further reducing energy efficiency. As a result, in order to improve the sustainability performance of a building, it is important to limit the natural lighting exposure to properly meet the needs and conditions of the building occupants. One of the most representative features to limit excessive sunlight exposure, is to incorporate operable blind systems. To this end, this research has been based on simulations performance through the Radiance Program. Radiance is capable of analyzing performance of daylight and impact of sunlight. Through analysis of different slat angles and blind shapes, impact and minimization of energy usage was evaluated. Furthermore, seasonal analysis was performed in order to understand the effects of seasonal climate factors. Ultimately this research provides an analysis of operable blinds optimization and effects of blind shape, control factors and angle of shading.

A Study on the Power Saving Fraction of Site Electrical Load depending on the installation area of PV system in Apartment Complex (공동주택 단지 배치유형별 PV시스템 최적 설치면적 및 전기부하 기여율 평가 연구)

  • Yoon, Jong-Ho;Park, Jae-Sung;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.60-66
    • /
    • 2008
  • This study is to investigate an optimal size and position of PV system for apartment complex through the electrical load matching analysis. The 4 types of arrangements of apartment buildings are considered as follows; ㅡtype, alternative ㅡtype, ㄱtype and ㅁtype. We assume that the studied site is composed of 9 buildings. Firstly, solar access evaluation of roof and facade in apartment buildings was performed with the hourly simulations of total received insolation on each surface considering the shading effect of buildings. Electrical load profile of typical Korean apartments were investigated for the load matching analysis. To calculate an annual total PV output, we used MERIT program which is a hourly based load matching tool developed by ESRD. TRY weather data of Daejeon are applied for this analysis. Result shows that approximately 11% of total electric load of the site can be supplied by the PV system in the case of full installation of PV system at the whole south-face roof area of 9 buildings in this stuided apartment complex. Depending on a various installation option of roof and facade area, the possible ratio of PV supply in total electrical load varies from 9% to 42%. Among the 4 arrangement types, the ㅡtype revealed the best option for the maximum output of PV system.

Analysis of Shadows Effect in Seoul Area for the Estimation of Roof-type PV Power Calculation (지붕형 태양광 발전량 산정을 위한 서울지역 그림자 효과 분석)

  • Yun, ChangYeol;Jung, BoRin;Kim, ShinYoung;Kim, ChangKi;Kim, JinYoung;Kim, HyunGoo;Kang, YongHeack;Kim, YongIl
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • For the preliminary step for estimating the performance of roof-type photovoltaic system in urban areas, we analyzed the solar radiation reduction ratio by shadow effect by buildings using DSM (Digital Surface Model) and GIS (Geographical Information System) tools. An average loss by the shadow is about 19% in Seoul. The result was related to the building density and distribution. Monthly results show that the winter season (December and January) was more affected by the shading than during the summer season (June and July). It is expected that useful empirical formulas can be made if more detailed correlation studies are performed.

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Growth Characteristics of Ginseng Seedling Transplanting by Self Soil Nusery, Nursery or Hydroponic Culture on Main Field (토직, 상토 및 양액육묘에 의해 생산된 묘삼의 본포 이식 후 생장특성)

  • Park, Hong Woo;Song, Jeong Ho;Kwon, Ki Bum;Lee, Ueong Ho;Son, Ho Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.238-243
    • /
    • 2017
  • Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2-year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 kg/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 cm for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.

Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

  • Zhang, Wei;Zhao, Xiaomeng;Shi, Mengya;Yang, Aizhen;Hua, Baoguang;Liu, Yueping
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System (한국형 영농형 태양광 스마트팜 시스템의 종합설계 및 구조해석을 통한 안전성 검토)

  • Lee, Sang-ik;Kim, Dong-su;Kim, Taejin;Jeong, Young-joon;Lee, Jong-hyuk;Son, Younghwan;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.21-30
    • /
    • 2022
  • Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm technologies that utilize solar energy for crop growth and electricity production-are attracting attention. Although several empirical studies on these systems have been conducted, comprehensive research on their design is lacking, and no standard model suitable for South Korea has been developed. Therefore, this study created an integral design of AVS reflecting domestic crop cultivation conditions and conducted a structural analysis for safety assessment. The shading ratio, planting distance, and agricultural machinery work of the system were determined. In addition, national construction standards were applied to evaluate their structural safety using a finite element analysis. Through this, the safety of this system was ensured, and structural considerations were put forward. It is expected that the AVS model will allow for a stable utilization of renewable energy and smart farm technologies in rural areas.

Effect of Leaf Blade-cutting on Ripening of Rice (수도(水滔)에 있어 전엽(剪葉)이 등숙(登熟)에 미치는 영향(影響)(예보(豫報)))

  • Park, J.K.;Kim, Y.S.;Lee, J.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.125-128
    • /
    • 1968
  • The effect of number of leaf after heading time on the growth of residual part and translocation of carbohydrates were investigated with water culture condition. Mutual shading and root rot were prevented. The results may be summerized as follows; 1. The ratio of ripened grain in the plot of no-leaf, flag leaf, two-leaf(flag and 2nd leaf) and three-leaf (flag, 2nd and 3rd leaf) was 38.8, 74.7, 83.9 and 87.0% respectively. The thousand grain weight was 21.3g, as the lowest value in no-leaf plot and was 28.7g in all other plots. 2. The accumulation of carbohydrate translocated in culm was increased by increment of leave-cutting, whereas the weight of culm was decreased. 3. It was suggested that healthy flag and 2nd leaf can keep the ratio of ripened grain around 80 percent.

  • PDF

Effect of Artificial Shade Treatment on the Growth and Biomass Production of Several Deciduous Tree Species (인공피음처리가 주요 활엽수종의 생장과 물질생산에 미치는 영향)

  • 최정호;권기원;정진철
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.65-75
    • /
    • 2002
  • The study was carried out to determine the growth and biomass production of major deciduous trees including Betula platyphylla var. japonica, Betula schmidtii, Zelkova serrata, Acer mono, Prunes sargentii, and Ligustrum obtusifolium subjected to artificial shade treatment in nursery field. The six deciduous trees seedlings grow for 2 years under different light intensity of 100%, 38-62%, 22-28%, 7-20%, and 2-6% of the full sun light intensity. The results were as follows; In the seedling heights and root collar diameters of shade intolerant species like Betula platyphylla var. japonica and Betula schmidtii, the relative growth rates of seedlings grown in full sun showed 2 times as compared with those subjected to the shade treatment of 2-6% light intensities of full sun. In the shade tolerant species like Acer mono ant Ligustrum obtusifolium, the growth performances were better in the seedlings grown in 38-62% light intensities of full sun. Total dry mass including the dry mass of leaves, shoot and root were as a whole decreased with shade treatment. The ratio of the dry mass of leaves and stem increased the dry mass of root. T/R ratio of the seedlings increased by decreasing the relative light intensity. And the T/R ratio of 2-6% light intensities of full sun was ranged from 1.1~5.0 were greater in the full sun light was ranged from 0.6~3.2. Light intensity by artificial shade treatment decreased in deciduous trees when compared on the whole, it showed tendency that SLA increases, increased that seeing resemblant tendency in LAR and LWR and changed of light intensity is strong, it increased that showed difference as statistical. But, LWR of Betula platyphylla var. japonica increased gradually and showed tendency that decreases rapidly in the shade treatment of 2-6% light intensities of full sun. This result is thought that biomass production decreased by shading treatment influenced in physiological characteristics such as leaf area and decrease of the leaf amount.

  • PDF