• Title/Summary/Keyword: Sgr B2

Search Result 29, Processing Time 0.031 seconds

SiO IN THE SGR B2 REGION

  • Minh, Y.C.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2007
  • The 2-1 and 5-4 transitions of SiO have been observed toward the Sgr B2 region, including the Principal Cloud(the GMC containing Sgr B2(M)) and its surroundings. The morphology and velocity structure of the SiO emission show a close resemblance with the HNCO Ring feature, identified by Minh & Irvine(2006), of about 10 pc in diameter, which may be expanding and colliding with the Principal Cloud. Three SiO clumps have been found around the Ring, with total column densities $N_{SiO}{\sim}1{\times}10^{14}cm^{-2}$ at the peak positions of these clumps. The fractional SiO abundance relative to $H_2$ has been estimated to be ${\sim}(0.5-1){\times}10^{-9}$, which is about two orders of magnitude larger than the quiet dense cloud values. Our SiO observational result supports the existence of an expanding ring, which may be triggering active star formations in the Principal Cloud.

[ H2S (22,0 - 21,1) ] OBSERVATIONS TOWARD THE SGR B2 REGION

  • MINH Y. C.;IRVINE W. M.;KIM S.-J.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.131-135
    • /
    • 2004
  • The $H_2S\;(2_{2,0} - 2_{1,1})$ line emission is observed to be strongly localized toward Sgr B2(M), and emissions from other positions in the more extended SgrB2 region are almost negligible. $H_2S$ is thought to form effectively by the passage of the C-type shocks but to be quickly transformed to $SO_2$ or other sulfur species (Pineau des Forets et al. 1993). Such a shock may have enhanced the $H_2S$ abundance in Sgr B2(M), where massive star formation is taking place. But the negligible emission of $H_2S$ from other observed positions may indicate that these positions have not been affected by shocks enough to produce $H_2S$, or if they have experienced shocks, $H_2S$ may have transformed already to other sulfur-containing species. The $SO_2\;22_{2,20} - 22_{1,21}$ line was also observed to be detectable only toward the (M) position. The line intensity ratios of these two molecules appear to be very similar at Sgr B2(M) and IRAS 16239-2422, where the latter is a region of low-mass star formation. This may suggest that the shock environment in these two star-forming regions is similar and that the shock chemistry also proceeds in a similar fashion in these two different regions, if we accept shock formation of these two species.

[ HCO+ ]CLOUDS IN THE SGR B2 REGION (SGR B2 지역에 있는 HCO+ 분자운의 특성 연구)

  • Minh Y. C.
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.233-242
    • /
    • 2004
  • The $HCO^+$ 1-0 transition line was observed toward the Sgr B2 region in our Galactic center. We found that there exist two large-scale velocity structures of $v_{lsr}\;{\sim}50\;and\;{\sim}100kms^{-1}$, which are thought to interact with each other. A new gas clump 'OF28 Cloud'('Odenwald & Fazio FIR 38' Cloud), showing different chemical and kinematical properties with the Sgr B2(M) cloud, was found in the $50kms^{-1}$ gas component. Toward the core of this component, we derive the $HCO^+$ total column density, $N(HCO^+)=(2-5){\times}10^{14}cm^{-2}$ and the mass $M=1{\times}10^6M_{\odot}$, by estimating its size, ${\sim}15pc$, from the half-power width of this component. We also found that there is a highly turbulent component in this region in the velocity range of about $100kms^{-1}$. The column density of this component is $N(HCO^+)=1{\times}10^{13}cm^{-2}$. The $HCO^+$ in this region may form effectively by the reaction between $C^+$ and OH, which are the elements whose abundances increase rapidly in shocked region.

Anti-inflammatory Effects of Smilacis Glabrae Rhizoma in Raw 264.7 Cells (토복령(土茯笭)의 Raw 264.7 세포에 대한 항염효과)

  • Oh, Sung-Won;Kim, Byoung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.288-297
    • /
    • 2009
  • Objective : Inflammatory cytokines have a close relationship to insulin dependent diabetes mellitus (IDDM). The inhibitory effect of Smilacis Glabrae Rhizoma (SGR) were examined on production of nitric oxide (NO), prostaglandin $E_2$ $(PGE_2)$, synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and NF-${\kappa}$B activation in Raw 264.7 cells. Methods: Raw 264.7 cells were pretreated with SGR(20, 50, 100 ${\mu}g$/ml), and then cultured with lipopolysaccharides (LPS). Cell viability was measured by MTT assay; inhibition of NO, $PGE_2$, and TNF-${\alpha}$ production were measured by Griess reagent and enzyme-linked immunosorbent assay(ELISA). Induction of COX-2 and iNOS were determined by western blotting analysis. Inhibition of NF-${\kappa}$B was measured by immunofluorescence assay (IFA). Results: SGR inactivated NF-${\kappa}$B, and inhibited the production of NO, iNOS, and $PGE_2$. Inhibition of COX-2 and TNF-${\alpha}$ could not be confirmed. Conclusions: From the above result. SGR was found to have an anti-inflammatory effect of inhibition of NO, iNOS, and $PGE_2$ production via inhibition of NF-${\kappa}$B.

  • PDF

Observations of the CH3OH 42-51 E Line Toward the Sgr B2 Region

  • Minh, Young-Chol;Kim, Sang-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.13-16
    • /
    • 2011
  • The $CH_3OH$ $4_2-5_1$ E transition was observed toward the Sgr B2 region, including the Principal Cloud and its surroundings. This methanol transition shows an extended emission along the 2'N cloud, which is believed to be colliding with the Principal Cloud and may trigger the massive star formation in this cloud. This extended methanol emission may also suggest that the 2'N cloud is under shocks. We derive total methanol column density $N(CH_3OH)\;=\;2.9{\pm}0.3{\times}10^{14}\;cm^{-2}$ toward the peak position of the extended emission. The fractional abundance of methanol is about 10.9, relative to the estimated total $H_2$ abundance, which is similar to the methanol abundances in quiet gas phase.

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties (합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명)

  • Lee, Seon Yong;Choi, Su-Yeon;Chang, Bongsu;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.

Development of a Predictive Mathematical Model for the Growth Kinetics of Listeria monocytogenes in Sesame Leaves

  • Park, Shin-Young;Choi, Jin-Won;Chung, Duck-Hwa;Kim, Min-Gon;Lee, Kyu-Ho;Kim, Keun-Sung;Bahk, Gyung-Jin;Bae, Dong-Ho;Park, Sang-Kyu;Kim, Kwang-Yup;Kim, Cheorl-Ho;Ha, Sang-Do
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.238-242
    • /
    • 2007
  • Square root models were developed for predicting the kinetics of growth of Listeria monocytogenes in sesame leaves as a function of temperature (4, 10, or $25^{\circ}C$). At these storage temperatures, the primary growth curves fit well ($R^2=0.898$ to 0.980) to a Gompertz equation to obtain lag time (LT) and specific growth rate (SGR). The square root models for natural logarithm transformations of the LT and SGR as a function of temperature were obtained by SAS's regression analysis. As storage temperature ($4-25^{\circ}C$) decreased, LT increased and SGR decreased, respectively. Square root models were identified as appropriate secondary models for LT and SGR on the basis of most statistical indices such as coefficient determination ($R^2=0.961$ for LT, 0.988 for SGR), mean square error (MSE=0.l97 for LT, 0.005 for SGR), and accuracy factor ($A_f=1.356$ for LT, 1.251 for SGR) although the model for LT was partially not appropriate as a secondary model due to the high value of bias factor ($B_f=1.572$). In general, our secondary model supported predictions of the effects of temperature on both LT and SGR for L. monocytogenes in sesame leaves.

SgrA* 22GHz KaVA(+TAK) observation and its Amplitude Calibration

  • CHO, ILJE;JUNG, TAEHYUN;ZHAO, GUANG-YAO;KINO, MOTOKI;SOHN, BONGWON
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2015
  • SgrA* located in the center of the Milky Way is of great interest to understand the physics of supermassive black hole(SMBH) and the interaction of the G2 cloud around SgrA* with the accretion flow which was expected since 2013. In order to seize this rare opportunity, KVN and VERA Array (so called, KaVA) has started an intensive monitoring program of SgrA* at 22/43 GHz where scatter broadening is reduced compared to lower frequency VLBI observations. We present the results of KaVA SgrA* observation together with Takahagi (32m) and Yamaguchi (32m) telescopes at 22 GHz on March 24, 2013. We have tested both a standard amplitude calibration methods using the Tsys and antenna gain information and a template amplitude calibration method which uses a peak of H2O maser line of nearby maser source (SgrB2), and found that the latter method is useful when an accuracy of Tsys measurement or antenna gain of a telescope is poor. In our comparison, the difference between the two methods is around 20% (~5% for the KVN and ~15% for the VERA when the elevation is above $20^{\circ}$). We also imaged SgrA* with a total flux of ~0.7 Jy at 22GHz, and fitted an elliptical Gaussian model which has a size of ~2.5mas for major axis and ~1.7mas for minor axis, respectively.

  • PDF

OBSERVATIONS OF $HC_3N$ TOWARD THE SGR B2 MOLECULAR CLOUD

  • MINH Y. C.;KIM HYUN-GOO
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • We have observed the 10-9 transitions of $HC_3N$ and its $^{13}C$ substitutes ($H^{13}CCCN,\;HC^{13}CCN$, and $HCC^{13}CN$), and the vibration ally excited 12-11 ($v_r=1$) $HC_3N$ transition toward the Sgr B2 molecular cloud. The observed $HC_3N$ emission shows an elongated shape around the Principal Cloud ($\~$4.5 pc in R.A. $\times$ 7.4 pc in Decl.). The optically thin $H^{13}CCCN$ line peaks around the (N) core and we derive the total column density $N(H^{13}CCCN) = 4 {\times}10^{13} cm^{-2}$ at this position. Toward the 2' N cloud which shows the peculiar chemistry, the $HC_3N$ lines show enhancements compared to the extended envelope. The shocks of the 2' N may have resulted in the enhancement of $HC_3N$. The hot component of $HC_3N$ is strongly concentrated around the (N) core and its HPW is $\~$0.9 pc in diameter. We derive the lower limit of the abundance ratio $N(HC_3N)/N(H^{13}CCCN)$ to be larger than 40 in most regions except the (M) and (N) cores. The fractionation processes of $^{13}C $at this region may not be as effective as previously reported.

  • PDF

OBSERVATIONS OF $C_3H_2 (2_{12}-1_{01})$ TOWARD THE SAGITTARIUS A MOLECULAR CLOUD

  • LEE C. W.;MINH Y. C.;IRVINE W. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.73-78
    • /
    • 1993
  • We have mapped the $C_3H_2\;2_{12}-1_{01}$ transition line toward the Sgr A molecular cloud on a 1' grid spacing and derived $C_3H_2$ column densities of $3\~7\times10^{14}\;cm^{-2}$ for molecular clouds of Sgr A. The fractional abundances of $C_3H_2$ relative to $H_2$ are obtained to be $3\~6\times10^{-9}$, which are slightly lower than that for the cold dark cloud TMC-1 but are enhanced by factors of 5-60 compared to those for Sgr B2 and the Orion extended ridge. We also estimate from the $C_3H_2$ column densities total masses of $\~10^6\; M_\bigodot$ for two clouds (M - 0.13 - 0.08 and M - 0.02 - 0.07), which are thought to be close to the virial equilibrium. We suggest that the large abundance of $C_3H_2$ in Sgr A may be partly due to the activities of the Galactic center.

  • PDF