• Title/Summary/Keyword: Sewage treatment system

Search Result 372, Processing Time 0.023 seconds

Feasibility Study of Natural Systems for Sewage Treatment and Agricultural Reuse (자연정화방법에 의한 오수처리와 농업적 재이용 타당성 검토)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.194-206
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent to agricultural reuse of reclaimed water. The constructed wetland and pond system was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the wetland system. The effluent of the wetland was used as an influent to pond systems. The influent concentrations of total coliform(TC), fecal coliform (FC), and E. coli were about $10^5$MPN/100 ml, and they were reduced to less than 10,000 MPN/100 ml on average after wetland treatments, showing over 95 % removal. And they were further reduced to less than 1,000 MPN/100 ml in average, showing over 85∼93 % removal after pond treatment. Turbidity and SS were improved effectively on average and their pond effluent concentration was about 4.5 NTU and 9.8 mg/L in average, respectively Average $BOD^5$ concentrations were also reduced substantially to 9.3 mg/L with about 83 % removal rate after wetland and pond treatment systems. Nutrients removal was relatively low and removal rate for T-N and T-P was less than 43 and 44%, respectively after wetland and pond treatment. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper describes a preliminary result Iron pilot study and further investigations are recommended on the optimum design parameters before full scale application.

Characteristics of wastewater treatment of sewage mixed with industrial wastewater (공장폐수가 혼합된 하수처리장의 하수처리 특성)

  • Ahn, June-Shu;Park, Wook-Keun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3341-3352
    • /
    • 2011
  • In this study, characteristics of wastewater treatment of sewage intermittently mixed with industrial wastewater is examined by investigating the operational status of each unit operation and measuring water quality. The bioreactor operating condition was measured for MLSS concentration 2,000~3,000 mg/L, HRT 5.3~16.3 hour, SRT 2.8~66.6 day, and SVI frequently showed the value above 200 which was higher than the optimal range of 50~150. It is thought that the sludge is not in suitable condition for sedimentation caused by the incoming industrial wastewater. When industrial wastewater is come into the system, MLDO inside of bioreactor rapidly increased, rate of nitrification is steeply decreased, and Pin floc. is spilled in the secondary clarifier. In the observance of microorganism showed that various bacterial floc. and ciliata were found as well as actinomycetes and filamentous bacteria(Sphaeotilus) which is known to cause bulking. Efficiency of each unit operation was fairly good in average. However, efficiency of the bioreactor treatment showed high fluctuation by unstable operating condition by intermittently incoming industrial wastewater.

Effects of Influent Flow Distribution Ratio and HRT on Sewage Treatment Efficiency of the ASA Process (유입수 분배비와 체류시간이 ASA 공정의 가정오수 처리효율에 미치는 영향)

  • Yang, Eun-Gyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2009
  • This study was performed to determine the effect of the influent flow distribution ratio and hydraulic retention time(HRT) on removal of organic matter, nitrogen and phosphorus when domestic sewage was treated by the advanced step aeration(ASA) process. Results of the experiment for the determination of the optimum influent flow distribution ratio between the anaerobic reactor and the anoxic reactor showed BOD removal efficiencies of above 92.0% at all influent flow distribution ratios from 9:1 to 4:6. The highest T-N removal efficiency was 82.6% at the influent flow distribution ratio of 6:4. On the other hand, the highest T-P removal efficiency was 67.8% at the influent flow distribution ratio of 9:1. Considering both the T-N and T-P removal efficiencies, the influent distribution ratio of 6:4 was considered the optimum. Results of the experiment for the determination of the optimum HRT at the optimum influent flow distribution ratio of 6:4 revealed BOD removal efficiencies better than 92.7% at all HRTs from 12hr down to 6hr. The highest T-N and T-P removal efficiency were 82.6% and 59.5%, respectively both at the HRT of 8hr. In conclusion, the optimum influent flow distribution ratio and HRT for treatment of domestic sewage by the ASA process were determined to be 6:4 and 8hr, respectively.

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.

Ensuring Stability in Accordance with the Secondary sedimentation tank Surface Loading rate Increase (장방향 이차침전지에서 이중정류벽 설치를 통한 침강속도 증대에 따른안정성 확보 분석)

  • Choi, Dongkyu;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • Improvement of the solid-liquid separation efficiency in the secondary sedimentation tank of the biological treatment process, is known to be increasing effectiveness of the overall system operation. Sewage treatment plant effluent SS is composed of most organic substances. In order to reduce the SS component in the secondary sedimentation tank discharge, fine SS components constituting the heterogeneous should be increased by its own aggregation (self flocculation), so that can be deleted through their precipitation. So, it is improved through using the installation of double rectification wall in this secondary tank. In case, sewage is rapidly increased due to the daily change of the influent water, it was confirmed that suspended solids caused by the impact load are processed stably. Therefore, there is a need for a facility installation which can be its own aggregation for reduction suspended solids in secondary sedimentation tank.

A study on Establishment of Vermicomposting Index Using Leakage Water (침출액을 이용한 지렁이 퇴비화지표 설정에 관한 연구)

  • Lee, Chang-Ho;Kim, Jong-Oh;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.178-184
    • /
    • 2007
  • In the present work, the vermicomposting index was investigated using leakage water from sludge to develop the process of mechanization and automation in the earthworm-cast treatment. The in situ sewage sludge was used batch and continuous experiments. Due to different treatment processes, the physico-chemical characteristics of liquid extracted from sludge was the similar change pattern. However, some items, such as Oxidation Reduction Potential (ORP), pH, Electrical Conductivity (EC) and $NH_3-N$, showed the distinct changes between pre- and post-vermicomposting. Also, The ORP and EC were the best parameters for the vermicomposting index. These results offered that the present vermicomposting technology was an actual earthworm-cast treatment.

  • PDF

Performance Study on Odor Reduction of Indole/Skatole by Composite

  • Young-Do Kim
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.67-72
    • /
    • 2024
  • This study developed a dry composite module-type deodorization facility with Twisting airflow changes and two forms (catalyst, adsorbent) within one module. Experiments were conducted to evaluate the reduction efficiency of odor substances C8H7N and C9H9N. The device combines UV oxidation using TiO2, catalytic oxidation using MnO2, and adsorption using A/C in five different methods. Data analysis of experimental results utilized the statistical package program Python 3.12. The program applied frequency analysis of odor removal efficiency, one-way ANOVA, and post-hoc tests, with statistical significance determined by p-value to ensure reliability and validity of the measurements. Results indicated that the highest removal efficiency of C8H7N and C9H9N was achieved by the UV+A/C method, suggesting the superior effectiveness and efficiency of the developed device. Combining multiple processes and technologies within one module enhanced odor treatment efficiency compared to using a single method. The device's modularity allows for flexibility in adapting to various sewage treatment scenarios, offering easy maintenance and cost-effective deodorization. This composite reaction module device can apply multiple technologies, such as biofilters, plasma, activated carbon filters, UV-photocatalysis, and electromagnetic-chemical systems. However, this study focused on UV-photocatalysis, catalysts, and activated carbon filters. Ultimately, the research demonstrates the practical applicability of this innovative device in real sewage treatment operations, showing excellent reduction efficiency and effectiveness by integrating UV oxidation, TiO2 photocatalysis, MnO2 catalytic oxidation, and A/C adsorption within a modular system.

Full Scale Study on The Optimum Conditions for Disposal of Sewage Sludge Cake by Using Continual Thermal Wind Dryer and Pyrolysis (연속적 열풍건조/열분해 Full Scale 장치를 이용한 하수슬러지 케익 처분을 위한 최적조건 연구)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.29-37
    • /
    • 2008
  • The objective of this research is to evaluate the optimum treatment methods for disposal sludge cake at different temperatures and periods of time. The disposal dehydrated sewage cake used in this study was obtained from N wastewater treatment plant in the P City. This system consists of continuous conveyer thermal dryer and pyrolysis. The continual conveyer thermal dryer was operated to evaluate the optimum conditions with temperature settings, ranges from 130 to $180^{\circ}C$, loading rates of 650~750 kg/hr and operating times of 110~120 minutes. The continual pyrolysis was also operated to evaluate the optimum conditions with temperature settings, ranges from 650 to $750^{\circ}C$, loading rates of 100~158 kg/hr and operating times of 20~40 minutes. The sewage sludge cake has a moisture content of 78~80% (wt) which decreased up to 1~3%(wt) resulted in breaking of cell wall after operating the continuous conveyer thermal dryer and pyrolysis. Important parameters which were operating times, moisture contents, loading rates, conveyer velocities and rotary velocities effects on the thermal kinetics and dynamics were investigated to evaluate the optimum conditions for the continual thermal dryer and pyrolysis.

  • PDF

Pre-Treatment of Sewage Sludge by Hydrodynamic Cavitation-II: Enhancement of Digestion Efficiency (수리동력학적 캐비테이션을 이용한 하수 슬러지의 전처리-II: 소화효율 향상)

  • Maeng, Jang-Woo;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.264-270
    • /
    • 2010
  • Waste activated sludge from sewage treatment plants mainly consisted of flocs of bacterial cell, and thus hard to be stabilized anaerobically due to rigid cell walls. One of the pretreatment methods to overcome this barrier is the venturi cavitation system (VCS) adopting hydrodynamic cavitation. This research was conducted to investigate the effects of the pretreatment of waste activated sludge by VCS on the anaerobic digestibility. Depending on the pretreatment period with the VCS, methane production, COD removal and VS removal efficiency increased 41%~45%, 36.5%~43.1% and 18.4~24.1%, respectively, compared to the control case. The increase in methane production from digester was 3.3~4.2 times higher than the theoretical methane potential of the increased SCOD after the VCS pre-treatment. This suggests that the VCS pre-treatment not only increases SCOD but also improves the digestibility of solid fractions. The energy mass balance indicated that the energy consumed for sludge pre-treatment could be recovered by the increased methane production after pre-treatment, suggesting the high potential for field application.

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.