• Title/Summary/Keyword: Sewage Concrete

Search Result 78, Processing Time 0.028 seconds

Development of Antibacterial Concrete for Sewage Facilities (하수구조물용 항균콘크리트의 개발)

  • Kim Gyu Yong;Kim Han Jun;Lee Seung Hoon;Chung Sam Yong;Khil Bae Su;Kim Do Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.541-544
    • /
    • 2004
  • The purpose of this study is to examine the antibiotic and physical properties of antibiotic concrete added inorganic liquor-type antibiotic agent(as named for Antibio-C) as the basic data for the development of antibiotic concrete. The main experimental variables were the types of antibiotic agents and it is tested for the properties of antibiotic, flow, compressive strength, crack-resistance and durability of concrete. As results, concrete containing antibiotic agent presented the strong antibiotic activities compared with non-added concrete. Also antibiotic concrete showed the higher or equality properties than non-added concrete with respect to compressive strength, crack resistance and durability such as neutralization depth.

  • PDF

Properties of artificial lightweight aggregates made from waste sludge

  • Chiou, I.J.;Chen, C.H.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.617-629
    • /
    • 2011
  • In this investigation, reservoir sediment and municipal sewage sludge were sintered to form the artificial lightweight aggregates. The sintered aggregates were compared with the commercialized lightweight aggregates to in terms of potential alkali-silica reactivity and chemical stability based on analyses of their physical and chemical properties, leaching of heavy metal, alkali-silica reactivity, crystal phase species and microstructure. Experimental results demonstrated that the degree of sintering of an aggregate affected the chemical resistance more strongly than did its chemical composition. According to ASTM C289-94, all potential alkali-silica reactivity of artificial lightweight aggregates were in the harmless zone, while the potential reactivity of artificial lightweight aggregates made from reservoir sediment and municipal sewage sludge were much lower than those of traditional lightweight aggregates.

Feasibility Study on the Use of Dredged Soil from Sewage Pipes as a Concrete Material (하수차집관로 준설토양의 콘크리트골재 적용성 평가에 관한 연구)

  • Kim, Joon-Ha;Kim, Hyeong Wook;Kim, In-Sik;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.10-16
    • /
    • 2017
  • Recently, the gap between demand and supply of natural aggregate has increased owing to the depletion of aggregate sources. Therefore, policy support is necessary for the stable supply of aggregate resources. Public and construction works experience problems when they do not receive a steady supply of aggregate. Further, instabilities in aggregate supply lead to increases in aggregate prices, and consequently construction costs. As a result, the likelihood of poor construction using low-grade aggregate increases. It is therefore crucial to put measures in place that deal with these issues. This study aims to reduce the load imposed by aggregate use on the environment by recycling soil dredged from sewage ducts to reduce the gap between supply and demand of fine aggregate. The dredged soil is assessed using an applicability test for quality characteristics and solidification with basic properties. This study aims to secure the safety of dredging soil and solidified objects through interior physical and chemical analyses and to utilize it as a base material for concrete solidification in the future.

Comparative Analysis on NIMBY Facility and Location - Suyeong·Nambu·Haeundae Sewage Disposal Plants Cases - (기피시설 입지의 지역별 비교 및 결정요인 분석 - 수영·남부·해운대하수처리장 사례중심 -)

  • Choi, Yeol;Choi, Jae Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.491-497
    • /
    • 2006
  • The goal of this research is to explore the opinions of the resident's neighboring within sewage disposal plants, to investigate the differences in accordance with each location of sewage disposal plants, and to examine the determinants to impact on the sewage disposal plants. The multivariate analysis of variance model and regression model are employed as the empirical analysis for this research. The major findings are as follows; as a rule, most of residents represented the sewage disposal plants are essential public facilities. The sewage disposal plants could be positively considered under proper compensation and negotiation, It is found that the satisfaction level against accomplishing process of the sewage disposal plants facilities are very low. In addition, it was revealed that the determinants to impact on the sewage disposal plants showed differently according to each current location of sewage disposal plants. It means that there are no absolutely concrete reasons to oppose the sewage disposal plants and they can be somewhat different by the each local characteristics. Therefore, these findings provide for the policy makers related with the NIMBY facilities including the sewage disposal plants with valuable information.

Pozzolanicity of Calcined Sewage Sludge with Calcination and Fineness Conditions (소성조건 및 분말도에 따른 소성하수슬러지(CSS)의 포졸란 특성)

  • So, Hyoung-Seok;So, Seung-Young;Khulgadai, Janchivdorj;Kang, Jae-Hong;Lee, Min-Hi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This study discussed the pozzolanic properties of calcined sewage sludge (CSS) according to calcination and fineness conditions. The chemical and mineralogical analysis of CSS according to calcination temperature and time were carried out and compared with that of the existing pozzolanic materials such as fly-ash, blast furnance slag and meta-kaolin. Various mortars were made by mixing those CSS and $Ca(OH)_2$ (1:1 wt. %), and their compressive strength and hydrates according to experimental factors such as fineness of CSS and curing age were also investigated in detail. The results show clearly the potentiality of calcined sewage sludge (CSS) as an admixture materials in concrete, but the CSS should be controlled by calcination temperature and time, and fineness etc. In this experimental condition, the calcination temperature of $800^{\circ}C$, calcination time of 2 hours and fineness of $5,000cm^2/g$ were optimum conditions in consideration of the mechanical properties and economic efficiency of CSS. The compressive strength of CSS mortars was higher than that of fly-ash mortars and blast furnace slag mortars, especially at the early ages. Then, the utilization of CSS in construction fields was greatly expected.

Material Properties of Ultra Rapid Hardening Mortar for Repairing Sewage Treatment Concrete Pipes (콘크리트 하수관거 보수용 초속경 수중불분리 모르타르의 재료적 특성)

  • Lee, Byungjae;Lee, Sunmok;Bang, Jin-wook;Kim, Yun-yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Among the sewage pipes installed in Korea, the length of concrete pipes exceeding 20 years is 66,334 km (42.5%). Deteriorated concrete sewer pipes need to be repaired due to the leakage of internal sewage, which causes problems such as sink holes by expanding the cavity around the pipeline. In this study, we tried to apply anti-washout underwater mortar with ultra rapid hardening cement and segregation reducing agent to sewage pipe repair. As a result of the setting time test, the final set time was delayed by up to 172% by incorporating segregation reducing agent. In the test for measuring the degree of mortar segregation in water, it was measured at pH 12 or less under all mixing conditions. In addition, the suspension amount was measured to be 50 mg / l or less to satisfy the KCI-AD102 standard by incorporating a segregation reducing agent. In terms of the average value of mortar compressive strength, by incorporating segregation reducing agent, the strength of the specimens produced in air was more than 80% of that of the specimens produced in water. Conversely, the bond strengths of the specimens produced in water were measured to be higher than those of the specimens produced in air. Water resistance was evaluated by measuring water absorption and water permeability. Water absorption and water permeability were reduced by 42.6% and 36.6%, respectively, by mixing segregation reducing agent.

An Experimental Study on Durability of Concrete Covered with Antibiotics (항균제를 도포한 콘크리트의 내구특성에 관한 실험적 연구)

  • Lee Eui-Bae;Lee Dong-Heck;Moon Hyung-Jae;Kim Jae-Hwan;Kim Gyu-Yong;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.97-100
    • /
    • 2005
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent the growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, durability such as resistance to carbonation, salt damage and chemical attack of concrete covered with inorganic and complex antibiotics were investigated. As a result of this study, it was proved that the antimicrobial performance of antibiotics was available. Also resistance to carbonation, salt damage and chemical attack of concrete covered with inorganic antibiotics was little improved but, in case of complex antibiotics, was remarkably improved. Moisture content of concrete, as a application condition of antibiotics in whole case, have little effect on performance but covering times of antibiotics have effect on performance only in case of complex antibiotics.

  • PDF

Performance of adding waste glass and sewage sludge to reservoir-sediment aggregates

  • Chiou, Ing-Jia;Chen, Chin-Ho;Lin, Chia-Ling
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.83-96
    • /
    • 2014
  • Accumulated annual reservoir sedimentation in Taiwan was 14.6 million m3 in 2010, seriously endangering reservoir safety and the water supply. In addition, the sintering temperature of reservoir-sediment aggregates (RSAs) is very high, and very energy consuming consequently. Therefore, to explore the effects of admixtures on sintering behavior and performance of the aggregates, two different admixtures are blended, waste-glass and municipal sewage sludge, into reservoir sediment to make artificial aggregates. Experimental results show that the lightweight characteristics of waste-glass/reservoir-sediment aggregates (WGRSAs) are more significant than those of sewage sludge/reservoir-sediment aggregates (SSRSAs). Moreover, as sintering temperature increases, the specific gravity of WGRSAs drops more apparently. The optimum sintering temperature of pure reservoir-sediment aggregates (PRSAs), SSRSAs, and WGRSAs was $1150^{\circ}C$, $1100^{\circ}C$, and $1050^{\circ}C$, respectively. The PRSAs are normal weight with better strength; the WGRSAs are lightweight and energy-saving; and the SSRSAs are lightweight with normal strength.

A study on the Property Evaluation of Waterproofinging and AntiCorrosion Systems Compositing Polymer Cement and Epoxy Resins (시멘트 혼입 폴리머와 에폭시수지를 복합한 상하수 시설용 방수${\cdot}$방식공법 성능평가에 관한 연구)

  • Bae Gi Sun;Jang Jong Ho;Jang Sung Joo;Oh Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.164-167
    • /
    • 2004
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49mm will be perform.

  • PDF

Performance Estimation and Prediction of Cement Matrix Corroded by Sulfuric Acid (황산 침식을 받는 시멘트 경화체의 성능 평가 예측)

  • Moon, Han-Young;Jeon, Joong-Kyu;Kim, Hong-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.213-216
    • /
    • 2006
  • As form a part of way to improve the durability of concrete placed on deleterious environments such as acidic rivers, sewage wastewater, and sewer system, the paper presented here is the results of experimental immersion test, and for the test solution, 4 types sulfuric acid solution was prepared. From the result of EDS analysis of cement paste at 180 days of immersion, the detected major chemical elements were Ca and S and they are assumed as composing elements of gypsum. A comparative study between prediction models from the Japanese Standard and the present study corresponding to $d=C\sqrt{t}$ and $d=\alpha{\cdot}t^n$ respectively accorded well with each other, as being 0.98 of determination coefficient.

  • PDF