• 제목/요약/키워드: Setup errors

검색결과 126건 처리시간 0.024초

인체 팬텀(Rando Phantom)을 이용한 CBCT의 Setup 유용성 평가 (Evaluation of Setup Usefulness of CBCT using Rando Phantom)

  • 장은성
    • 한국콘텐츠학회논문지
    • /
    • 제11권7호
    • /
    • pp.234-238
    • /
    • 2011
  • 온보드영상장치(OBI)를 사용하고 있는 콘빔CT(CBCT)를 이용하여 인체 팬텀 자세 및 위치와 모의치료시 인체 팬텀 자세 및 위치를 비교하여 CBCT의 3D 타깃 위치의 유용성을 평가하고자 한다. 실제방사선 치료와 동일한 과정으로 모의 치료계획을 하기 위해서 인체 팬텀(The Rando Phantom) 을 set up 한다. 기준점에 놓인 인체팬텀에서 CBCT를 이용하여 평행이동 및 회전이동 하였다. 이때 얻어진 영상들의 위치 차이에 대한 평균 및 편차를 인체 팬텀의 실제 이동 값과 비교하였다. 실험은 10회씩 반복하여 오차의 표준 편차를 구하였다. CBCT로 획득한 영상과 모의치료 시 획득한 CT영상을 비교하는 3D/3D 매칭에서 평균 setup의 residual error의 평균 및 표준편차는 lateral $0.2{\pm}-0.2$ mm, longitudinal $0.4{\pm}0.3$ mm, vertical $-0.4{\pm}0.1$ mm 로 각각 0~4 mm의 범위 이내로 나타났다. 모의실험 된 회전 내용은 $0.4{\pm}0.2$ mm, $0.3{\pm}0.3$ mm, 그리고 $0.3{\pm}0.4$ mm이다. 회전에 의한 error는 $0{\sim}0.6^{\circ}$ 범위이다. 인체 팬텀을 이용한 CBCT 3D/3D 매칭은 모의 치료 시와 환자 치료 시 정확한 정합을 함으로써 error를 최소화 하였다.

모형헬기를 이용한 불확정 다변수 이상검출법의 응용 (Robust Fault Detection Method for Uncertain Multivariable Systems with Application to Twin Rotor MIMO System)

  • 김대우;유호준;권오규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.136-144
    • /
    • 1999
  • This paper deals with the fault detection problem in uncertain linear multivariable systems and its application. A robust fault detection method presented by Kim et a. (1998) for MIMO (Multi Input/Multi Output) systems has been adopted and applied to the twin rotor MIMO experimental setup using industrial DSP. The system identification problem is formulated for the twin rotor MIMO system and its parameters are estimated using experimental data. Based on the estimated parameters, some fault detection simulations are performed using the robust fault detection method, which shows that the preformance is satisfied.

  • PDF

고속 정밀 가공기의 공구셋업 측정기술 (Tool-Setup Measurement Technology of High Speed Precision Machining Tool)

  • 박경택;신영재;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

상관관계 해석을 고려한 온 더 머신 자동측정 시스템 (Measuring Automation System for Analysis of Dimensional Reationships On the Machine)

  • 정성종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.183-187
    • /
    • 1996
  • On the machine measuring system composed of touch trigger probes, a DNC module, a CMM module, an analysis module and a man-machine interface unit was developed. Measuring accuracy is affected by working accuracy of the on the machine measuring system. The working accuracy of the system is due to geometric errors of th machine tool, servo errors of feed drives and positioning errors of probes. In order to compensate for the measuring errors due to the working accuracy, a calibration module was developed. The measuring automation system was realized with the on the machine measuring system and an IBM-PC on the machine center through a RS-232C. It turns the machining machine (CMM). The system is used for dimensional checking of machined components. initial job setup, part identification, identification of machining errors due to deflection and wear of tools. cutter run out, and calibration of machine tools. A horizontal machining center equipped with FANUC OMC wre used for verification of the system. The validity and reliability of the system. The validity and reliability of the system were confirmed through a series of experiments with gage blocks, ring gages, comparison measurement with a commercial CMM, and so on.

  • PDF

Feasibility Study of Patient Specific Quality Assurance Using Transit Dosimetry Based on Measurement with an Electronic Portal Imaging Device

  • Baek, Tae Seong;Chung, Eun Ji;Son, Jaeman;Yoon, Myonggeun
    • 한국의학물리학회지:의학물리
    • /
    • 제28권2호
    • /
    • pp.54-60
    • /
    • 2017
  • This study was designed to measure transit dose with an electronic portal imaging device (EPID) in eight patients treated with intensity modulated radiotherapy (IMRT), and to verify the accuracy of dose delivery to patients. The calculated dose map of the treatment planning system (TPS) was compared with the EPID based dose measured on the same plane with a gamma index method. The plan for each patient was verified prior to treatment with a diode array (MapCHECK) and portal dose image prediction (PDIP). To simulate possible patient positioning errors during treatment, outcomes were evaluated after an anthropomorphic phantom was displaced 5 and 10 mm in various directions. Based on 3%/3 mm criteria, the $mean{\pm}SD$ passing rates of MapCHECK, PDIP (pre-treatment QA) for 47 IMRT were $99.8{\pm}0.1%$, $99.0{\pm}0.7%$, and, respectively. Besides, passing rates using transit dosimetry was $90.0{\pm}1.5%$ for the same condition. Setup errors of 5 and 10 mm reduced the mean passing rates by 1.3% and 3.0% (inferior to superior), 2.2% and 4.3% (superior to inferior), 5.9% and 10.9% (left to right), and 8.9% and 16.3% (right to left), respectively. These findings suggest that the transit dose-based IMRT verification method using EPID, in which the transit dose from patients is compared with the dose map calculated from the TPS, may be useful in verifying various errors including setup and/or patient positioning error, inhomogeneity and target motions.

토모다이렉트 3D-CRT을 이용한 유방암 환자의 회전 오차 (Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect)

  • 정재홍;조광환;문성권;배선현;민철기;김은석;여승구;최진호;정주영;최보영;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제26권1호
    • /
    • pp.6-11
    • /
    • 2015
  • 본 연구의 목적은 토모다이렉트 3D-CRT (TD 3D-CRT)을 이용한 유방암 방사선치료에서 회전축(roll, pitch, and yaw) 오차를 분석하고 자 하였다. TD-3DCRT로 치료가 종료된 유방암 환자 총 20명을 선정하였고, 총 80회의 MVCT 영상을 바탕으로 시스템(systematic), 임의(random) 오류를 포함한 환자위치잡이 오차(patient setup errors)와 치료 여백(treatment margin, mm)을 후향적으로 분석하였다. 또한, 각 환자에 대한 회전축 오차 분석은 자동영상정합(automatic image registration)을 이용하였다. X, Y, Z 방향에 대한 치료여백은 각각 4.2 mm, 6.2 mm, 6.4 mm였다. 회전축 오차에 대한 평균 각도(degree)는 roll, pitch, yaw가 각각 0.3도, 0.5도, 0.1도였고, 시스템과 임의 오류는 모두 1도 이내였다. 전반적으로 환자 위치잡이 오차는 Y와 Z방향에서 X에 비하여 높게 나타났다. 본 연구에서 회전축 오차 각도가 2도 이내는 roll, pitch, yaw에서 각각 95.1%, 98.8%, 97.5% 분포였다. 그러나, 치료영역의 길이가 길어짐에 따라 치료 중심지점을 기준으로 상부와 하부의 가장자리(Edge)가 틀어지게(Twisted)될 가능성이 높아질 수 있다. 따라서 치료의 정확성과 재현성을 위하여 각 환자의 특성을 고려하고, 회전축 오차를 주기적으로 확인할 필요가 있다.

반도체 생산 배취공정에서의 배취 크기의 결정 (Batch Sizing Heuristic for Batch Processing Workstations in Semiconductor Manufacturing)

  • 천길웅;홍유신
    • 대한산업공학회지
    • /
    • 제22권2호
    • /
    • pp.231-245
    • /
    • 1996
  • Semiconductor manufacturing line includes several batch processes which are to be controlled effectively to enhance the productivity of the line. The key problem in batch processes is a dynamic batch sizing problem which determines number of lots processed simultaneously in a single botch. The batch sizing problem in semiconductor manufacturing has to consider delay of lots, setup cost of the process, machine utilization and so on. However, an optimal solution cannot be attainable due to dynamic arrival pattern of lots, and difficulties in forecasting future arrival times of lots of the process. This paper proposes an efficient batch sizing heuristic, which considers delay cost, setup cost, and effect of the forecast errors in determining the botch size dynamically. Extensive numerical experiments through simulation are carried out to investigate the effectiveness of the proposed heuristic in four key performance criteria: average delay, variance of delay, overage lot size and total cost. The results show that the proposed heuristic works effectively and efficiently.

  • PDF

2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • 제16권4호
    • /
    • pp.354-364
    • /
    • 2012
  • In this paper, a new 2-step quadrature phase-shifting digital holographic optical encryption method using orthogonal polarization is proposed and tolerance errors for this method are analyzed. Unlike the conventional technique using a PZT mirror, the proposed optical setup comprises two input and output polarizers, and one ${\lambda}$/4-plate retarder. This method makes it easier to get a phase shift of ${\pi}$/2 without using a mechanically driven PZT device for phase-shifting and it simplifies the 2-step phase-shifting Mach-Zehnder interferometer setup for optical encryption. The decryption performance and tolerance error analysis for the proposed method are presented. Computer experiments show that the proposed method is an alternate candidate for 2-step quadrature phase-shifting digital holographic optical encryption applications.

Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정 (Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method)

  • 이훈희;이동목;양승한
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.