본 연구에서는 36개의 CFRD에 대한 계측자료(38개 지점)를 통해 댐 축조단계에서 얻어지는 계측자료를 이용하여 담수 후 댐의 정부침하량 및 내부침하량 예측기법을 제안하였다. 전체 데이터에 대한 분석 결과, 댐체의 정부침하량 및 시공 중 최대 내부침하량은 댐체의 높이 및 간극비에 비례하였다. 그러나 내부침하량과 댐 높이에 대한 반대수지 상에서의 선형회귀분석 결과는 간극비에 따른 차이 없이 대단히 유사함을 확인하였다. 또한 CFRD의 시공 중 내부침하량을 통해 정부침하량의 예측이 가능하였으며, 댐체가 조밀할 경우 연직변형계수가 크게 평가됨과 동시에 계곡형상의 영향을 많이 받는 것으로 나타났다. 본 연구결과는 향후 CFRD의 설계, 시공, 장기적 유지관리를 위한 유용한 도구가 될 것으로 사료된다.
In this study, the settlement data of 32 center cored rockfill dams (total 39 monitored data) were collected and analyzed to develop the method to predict the crest settlement of a CCRD after impounding by using the internal settlement data occurred during construction. An artificial neural network (ANN) modeling was used in developing the method, which was considered to be a more reliable approach since in the ANN model dam height, core width, and core type were all considered as input variables in deriving the crest settlement, whereas in conventional methods, such as Clements's method, only dam height is used as a variable. The ANN analysis results showed a good agreement with the measured data, compared to those by the conventional methods using regression analysis. In addition, a simple procedure to use the ANN model for engineers in practice was provided by proposing the equations used for given input values.
This study was carried out for the purpose of pre-estimating long-term settlement under condition of actual field soil's property, in case of building up industrial sites on the marine deposit silty clay located at West Coast in Korea. This study analyzed Hyperbolic Method, Square Root Time Method and Exponential Function Method with utilization of measured survey values of settlement in In-Cheon Namdong Industrial Sites. In the future, for the continuos utilization, it seemed to be needed that further the survey values of fields should be accurartely measured for the analysis of more accurate pre-estimate about long-term settlement. Among the prediction methods of settlement Hyperbolic Method seemed to be the best fitting method for measured data. The settlement equations were derived from above three methods, for long-term settlements.
This study was performed to estimate the degree of consolidation using excess pore water pressure in the very soft ground. The final settlement prediction methods by Hyperbolic, Asaoka and Curve fitting methods from the measured settlement data were used to compare with the degree of consolidation estimated by excess pore water pressure. The dissipated excess pore water pressure during embankment construction and the peak excess pore water pressure on the completed embankment were used for the estimation of the degree of consolidation. After completion of embankment, it was concluded that the degree of consolidation estimated from dissipated excess pore water pressure was more reliable than that from the peak excess pore water pressure. And, the degree of consolidation estimated from the surface settlement was nearly the same as settlement of each layer. The degree of consolidation estimated from dissipated excess pore water pressure was a little larger than that from settlement.
최근 우리나라는 국토의 고도 이용과 지역 간의 균형발전을 도모하기 위한 목적으로 택지 및 단지, 도로, 항만 및 공항 등의 건설이 증가하고 있는 추세이다. 현재도 많은 공사들이 연약한 지반에서 실시되고 있다. 이로 인해 건설현장에서 지반의 장기침하, 파괴, 부등침하, 국지적인 구조물 손상 등의 공학적인 문제들이 지속적으로 보고되고 있다. 특히, 연약지반이 비교적 두껍게 발달한 서 남해안 지역과 내륙지역의 연약지반 위에 축조되는 각종 구조물, 도로 등의 경우 필연적으로 하중에 의한 지반의 장기침하가 발생하게 된다. 따라서, 본 연구에서는 기존의 장기침하량 예측기법들인 쌍곡선법, 호시노법, $\sqrt{S}$법, 아사오카법 등의 지역별 적정 분석기법을 검토하는 한편, 일반화된 산정식의 도출을 통한 새로운 예측기법에 대한 연구를 수행하여 토질특성 및 시공조건에 대한 상관관계를 분석하고 장기적인 침하특성과의 연관계수를 도출하였다. 수식의 검증을 위해 16개 지역의 계측자료와 수치해석 결과를 비교 및 분석을 실시하였다.
본 연구는 기존의 침하량예측법의 단점을 극복하기 위한 방법으로 인공신경망의 적용성을 분석하였다. 연약지반을 개량하기 위해 사용되는 선행재하 공법에서 침하량의 산정은 매우 중요한 부분을 차지하는데, 현재 쌍곡선법, Hoshino법, Asaoka법이 침하량예측에 주로 사용되고 있다. 그러나 이들 방법들은 설계단계에서는 예측이 불가능하다는 단점을 가지고 있다. 반면 인공신경망은 축적된 자료들의 학습을 통해 설계단계에서 예측이 가능하며 비교적 용이하게 적용할 수 있다. 본 연구에서는 장래침하량을 산정하기 위하여 Elman 신경망을 사용하였다.
This study was performed of the research for accurate prediction of consolidation settlement at initial consolidation time. In order to analysis the program is developed which is able to analysis behavior of settlement caused by gradual load increment, and simulated consolidation using whole measured settlement data and that from beginning of embankment to end of it. The former result agrees with measured data and the latter it overestimated 13% larger than measured data. It was found the time which takes to be eliminated effect of gradual step load. This method is compared with the results from Asaoka, Hyperbolic and Tan's hyperbolic method respectively Asaoka and Tan's hyperbolic methods we in good agreement with this method. But classical hyperbolic method overestimated about 32%.
Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.
연약지반 개량을 위한 선행재하 공법에서 현장 시공 조건에 따른 연약지반의 침하 거동을 예측하는 것은 매우 중요하다. 하지만 실제 지층의 구성이나 물성치를 정확히 평가하는 것은 매우 어렵기 때문에, 대부분은 침하 계측 데이터에 기반을 둔 침하량 추세 분석 방법을 통하여 최종 침하량 및 지반 물성치를 추정한다. 현재 다양한 침하량 추세 분석 방법이 제안되었으며, 국내 시공 현장에서는 쌍곡선법이 가장 널리 사용되고 있다. 하지만 동일한 현장에 대하여 쌍곡선법을 사용하더라도 계측 침하 자료의 회귀 방법, 그리고 분석 대상 구간을 선정함에 따라 침하랑 결과는 상이하게 나타난다. 본 연구에서는 쌍곡선법을 이용하여 부산 $\bigcirc\bigcirc$ 현장의 현장 계측 데이터로부터 침하 곡선을 추정하였다. 이때 쌍곡선법의 적용 조건을 다양하게 적용하였으며, 그에 따른 결과들을 비교, 분석하여 최적의 적용 방법을 제안하였다. 회귀 방법과 계측 데이터의 분석 구간에 따른 추정 치 변화를 평가하였으며, 이후 검증 시험을 통하여 적용 방법의 타당성을 검증하였다. 해석 결과 성토에 따른 지하수위 상승이 안정화된 시점 이후 해석하는 것이 안정적이며, 해석 방법에 대해서는 현장 데이터를 직접 회귀하는 것이 더 정확하게 침하 곡선을 추정할 수 있었다.
In this study, it was proposed that a modified equation for estimating consolidation settlement on soft clay ground, which separate total settlement into primary and secondary settlement equation. The settlement by the proposed equation and by the measured settlements from laboratory model test was compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approached to be more realistic comparing to the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by the Hyperbolic, Asaoka methods is needed to measure the initial period of settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.