• Title/Summary/Keyword: Setting process

Search Result 1,524, Processing Time 0.032 seconds

Identification of Electrical Resistance of Fresh State Concrete for Nondestructive Setting Process Monitoring

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.414-420
    • /
    • 2015
  • Concrete undergoes significant phase changes from liquid to solid states as hydration progresses. These phase changes are known as the setting process. A liquid state concrete is electrically conductive because of the presence of water and ions. However, since the conductive elements in the liquid state of concrete are consumed to produce non-conductive hydration products, the electrical conductivity of hydrating concrete decreases during the setting process. Therefore, the electrical properties of hydrating concrete can be used to monitor the setting process of concrete. In this study, a parameter identification method to estimate electrical parameters such as ohmic resistance of concrete is proposed. The effectiveness of the proposed method for monitoring the setting process of concrete is experimentally validated.

Electrical Impedance Response Model of Concrete in Setting Process (응결 과정 콘크리트의 전기 임피던스 응답 해석 모델)

  • Shin, Sung Woo;Hwang, Garam;Lee, Chang Joon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.116-122
    • /
    • 2014
  • Assessment of setting process of concrete is important as it provides useful information to schedule concreting work in construction site. Electrical impedance measurement method, which utilizes the change of electrical resistance of concrete, has been applied to assess setting process of cement-based materials. However, the applicability of the method has been demonstrated only for cement paste and mortar. The main purpose of this research is to develop the electrical impedance based setting process assessment for concrete. To this end, electrical impedance response model for concrete should be developed in advance since it is essential to estimate the electrical resistance of concrete from measured impedance response. The electrical resistance of concrete is a key parameter for the setting process assessment. In this study electrical impedance responses of the concrete in setting process are measured and analyzed. Thereby, an electrical impedance response model of the liquid state concrete is developed and schematically validated.

A Feasibility Analysis of the Durometer for Setting Time Assessment of the High Fluidity Concrete with SCMs (혼화재 치환 고유동 콘크리트에서 응결시간 판정시 듀로메타 사용 가능성 분석)

  • Lee, Hyuk-Ju;Lee, Young-Jun;Kim, Tae-Woo;Min, Byeong-Oh;Lee, Jun-Seok;Han, Min-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.187-188
    • /
    • 2018
  • For the concrete construction, finishing process is inevitable for crack control and improving permeability. The finishing process is closely related with setting time, but currently, the timing of the finishing process is not managed with scientifically but feeling of the workers. In this research, therefore, by comparing with the setting time measured with penetrating method, the feasibility of durometer for measuring setting time was analyzed. As a result, there was a high relationship between setting time measured with penetration method and durometer. Therefore, it is expected that using durometer can be a good solution for assessing setting time for finishing process.

  • PDF

A Simulation Method of PID Tuning with Process Modeling in Operating Nuclear Power Plants (가동원전에서 공정모델링을 통한 PID 튜닝 시뮬레이션 방법)

  • Min, Moon-Gi;Jung, Chang-Gyu;Lee, Kwang-Hyun;Lee, Jae-Ki;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.290-294
    • /
    • 2014
  • PID(Proportional, Integral, Derivative) controller is the most popular process controllers in nuclear power plants. The optimized parameter setting of the process controller contributes to the stable operation and the efficiency of the operating nuclear power plants. PID parameter setting is tuned when new process control systems are installed or current process control systems are changed. When the nuclear plant is shut down, a lot of PID tuning methods such as the Trial and Error method, Ultimate Oscillation method operation, Ziegler-Nichols method, frequency method are used to tune the PID values. But inadequate PID parameter setting can be the cause of the unstable process of the operating nuclear power plant. Therefore the results of PID parameter setting should be simulated, optimized and finally verified. This paper introduces the simulation method of PID tuning to optimize the PID parameter setting and confirms them of the actual PID controller in the operating nuclear power plants. The simulation method provides the accurate process modeling and optimized PID parameter setting of the multi-loop control process in particular.

The Influence of Pore Water Contamination on the Cement Treated Sandy Soil (공극수 오염이 시멘트 고화처리된 사질토에 미치는 영향)

  • Yu, Chan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.144-152
    • /
    • 2003
  • Laboratory experiments were carried out to investigate the influence of pore water contamination on the treatment effect of sandy soil which was solidified by Portland cement. In the experiments, setting time of hydraulic cement that was mixed with contaminated mixing water was measured using Vicat equipment and observed the tendency of setting process with the kind of contaminants, organic or inorganic components. It was shown that organic contaminants of the mixing water affect largely on the initial setting process of hydraulic cement and inorganics, expecially heavy metals, did not affect on the initial setting process, otherwise it was appeared that setting time of the sandy soil that was contaminated with inorganic components was apparently faster than the sandy soil that did not include inorganic components even though organic concentrations was relatively low level (COD=200∼300) in the mixing water. The results of unconfined compression strength test (UCST) were well consistent with the results of Vicat equipment test.

Investigation of Setting Process of Cementitious Materials Using Electromechanical Impedance of Embedded Piezoelectric Patch

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.607-614
    • /
    • 2012
  • In this study, the evolution of the electro-mechanical impedance (EMI) of a piezoelectric (PZT) patch embedded in fresh cement paste was investigated to discuss the possibility of monitoring the setting process of cement-based materials using an EMI sensing technique. A tailored thin square PZT patch was embedded in cement paste before casting, and EMI signatures of the embedded patch were continuously measured from casting up to 12 hours. A standard penetration resistance test was performed to compare and correlate the evolution of EMI during the setting process. The results showed that EMI responses differ according to the age of the cement paste, and that the behavior of the EMI resonance peak has a clear correlation with the penetration resistance of the cement paste. Based on the results, it is concluded that an EMI sensing technique using embedded PZT patch can be effectively applied to monitor the setting process of cement-based materials.

Improvement of machining process for mold parts using on-machine measuring system and CAM automation (기상측정 및 CAM 자동화를 통한 금형 제작 공정 개선)

  • Park, Hae-Woong;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2022
  • In the CNC machining process, problems such as lowering of machine operation rate, setting errors, and machining precision occur due to the increase in setting time and preparation time. These machining errors cause delays in delivery and increase in cost due to an increase in the number of mounting and dismounting of the workpiece, an increase in measurement and reprocessing time, and an increase in the finishing time in the assembly process. Therefore, in this study, by automating the setting of the work piece using OMV (On Machine Verification), which is a meteorological measurement system, the preparation time for machining the work piece and the setting accuracy were improved, the rework rate was reduced, and the mold manufacturing process was shortened. Through the advancement, standardzation, and automation of the mold part manufacturing process, we have improved productivity by minimizing low-value-added repetitive tasks. In addition, the measurement time was reduced by more than 50% and the machining measurement rate was improved by more than 20%, eliminating repetitive work for correcting machining defects, and reducing the work preparation time by more than 15% through automatic setting.

A Method of Tuning Optimization for PID Controller in Nuclear Power Plants (원자력발전소 PID 공정제어기에 대한 튜닝 최적화 방법)

  • Sung, Chan Ho;Min, Moon Gi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • PID(Proportional, Integral, Derivative) controller is one of the most used process controllers in nuclear power plants. The optimized parameter setting of process controller contributes to the stable operation and efficiency in the operating nuclear power plants. PID parameter setting is tuned when new process control system is established or process control system is changed. It is a burdensome work for I&C(Instrument and Control) engineers to tune the PID controller because it requires a lot of experience and knowledge. When the plant is in operation, inadequate PID parameter setting can be the cause of the unstable process of the plant. Therefore the results of PID parameter setting should be compared, simulated, verified and finally optimized. The practical PID tuning methods used in process controller are tuning operation calculation(Ziegler-Nicholes, Minimum TIAE, Lambda, IMC), exclusive tuning program based on computer and Matlab application. This paper introduces the various tuning methods and suggests an optimized PID tuning process in the operating nuclear power plants.

Process Performance Feedback and Quality Goal Setting as Sources of Process Restrictiveness and Behavior Guidance in Electronic Brainstorming

  • Jung, Joung-Ho
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-15
    • /
    • 2017
  • Purpose Through the provision of real time performance information about who is contributing and who is not in Electronic Brainstorming, prior studies evidenced a significant performance gain. However, it has been observed that the quantity-based performance feedback alone does not have enough restrictiveness to guide the performance behavior throughout the idea generation session. We included the notion of goal setting into the process performance feedback mechanism in an effort to regulate performance behavior and to better understand why individuals in Electronic Brainstorming are not obtaining enough stimulation benefits in the group interaction process. Design/methodology/approach We had developed real-time visual process performance feedback and modified to include goal setting. This mechanism visually displays individuals' performances two-dimensionally (quality for each idea vertically and quantity of ideas horizontally along with their goals). As individuals' contributions accumulate, the mechanism reveals performance histories by connecting the sequence of ideas in a time-series format, telling stories of individuals' performances. Then, we compared the performance outcome from this study with the outcomes from two prior studies (i.e., Jung et al., 2010 and Jung, 2014). Findings The results showed that the inclusion of goal setting into the process performance feedback solved the issue in the previous study. That was the lower than expected magnitude of performance enhancement of process performance feedback when compared to that of quantity-based feedback. It appears that goals as a motivational technique provide standards for systematic self-evaluation, serving as a cue to regulate performance behavior by strengthening the linkage between effort and performance. Thus, goals seem to set up a self-fulfilling prophecy, preconditioning better performance. However, the outcome still showed that its performance magnitude is unsatisfactory because the outcome of this study turned out to be close to the outcome of just quantity-based performance feedback in Jung et al.'s (2010) study.

The Effects of Tool Setting Errors on Cutting Tool Vibrations (공구 진동에 대한 공구 셋팅 오차의 영향)

  • Shin Y.J.;Park K.T.;Kang B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.199-202
    • /
    • 2005
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of parts created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool setting errors and surface roughness end tilted mills were used to cut aluminum samples. The results indicate that tool setting errors have significant effects on surface roughness and cutting forces.

  • PDF