• Title/Summary/Keyword: Seta Closed Cup Tester

Search Result 15, Processing Time 0.021 seconds

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

Flash Point Measurement of n-Propanol+n-Hexanol and n-Butanol+n-Hexanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 n-Propanol+n-Hexanol계와 n-Butanol+n-Hexanol계의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.34-39
    • /
    • 2019
  • Flash point is the important indicator to determine fire and explosion hazards of liquid solutions. In this study, flash points of n-propanol+n-hexanol and n-butanol+n-hexanol systems were obtained by Seta flash tester. The methods based on UNIFAC equation and multiple regression analysis were used to calculate flash point. The calculated flash point was compared with the experimental flash point. Absolute average errors of flash points calculated by UNIFAC equation are $2.9^{\circ}C$ and $0.6^{\circ}C$ for n-propanol+n-hexanol and n-butanol+n-hexanol, respectively. Absolute average errors of flash points calculated by multiple regression analysis are $0.5^{\circ}C$ and $0.2^{\circ}C$ for n-propanol+ n-hexanol and n-butanol+n-hexanol, respectively. As can be seen from AAE, the values calculated by multiple regression analysis are noticed to be better than the values by the method based on UNIFAC eauation.

The Calculation of Flash Point for n-Nonane+n-Decane+n-Tridecane System by Raoult's Law and Multiple Regression Analysis (라울의 법칙과 다중회귀분석법에 의한 n-Nonane+n-Decane+n-Tridecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • The flash point is one of the most important properties to characterize fire and explosion hazard of flammable liquid mixture. In this paper, the flash points of ternary liquid mixture, n-nonane+n-decane+n-tridecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and multiple regression analysis. The absolute average errors(AAE) of the results calculated by Raoult's law is $0.6^{\circ}C$. The absolute average errors of the results calculated by multiple regression analysis is $0.4^{\circ}C$. As can be seen from AAE, the calculated values based on multiple regresstion analysis were found to be better than those based on Raoult's law.

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane (Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.

Estimation of the Flash Point for n-Pentanol + n-Propanol and n-Pentanol + n-Heptanol Systems by Multiple Regression Analysis (다중회귀분석법을 이용한 n-Pentanol + n-Propanol계 및 n-Pentanol + n-Heptanol계의 인화점 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, the flash points of two flammable binary mixtures, n-pentanol + n-propanol and n-pentanol + n-heptanol systems were measured using a Seta flash closed cup tester. The flash point was estimated using the methods based on Raoult's law and multiple regression analysis. The measured flash points were also compared with the predicted flash points. The absolute average errors (AAE) of the results calculated by Raout's law were $1.3^{\circ}C$ and $1.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. The absolute average errors of the results calculated by multiple regression analysis were $0.4^{\circ}C$ and $0.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. According to the AAE, the calculated values based on multiple regression analysis were better than those based on Raoult's law.