• Title/Summary/Keyword: Set covering optimization

Search Result 16, Processing Time 0.019 seconds

Optimization-Based Pattern Generation for LAD (최적화에 근거한 LAD의 패턴생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.409-413
    • /
    • 2005
  • The logical analysis of data(LAD) is an effective Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a new optimization-based pattern generation methodology and propose two mathematical programming medels, a mixed 0-1 integer and linear programming(MILP) formulation and a well-studied set covering problem(SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with much ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Prototype based Classification by Generating Multidimensional Spheres per Class Area (클래스 영역의 다차원 구 생성에 의한 프로토타입 기반 분류)

  • Shim, Seyong;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.21-28
    • /
    • 2015
  • In this paper, we propose a prototype-based classification learning by using the nearest-neighbor rule. The nearest-neighbor is applied to segment the class area of all the training data into spheres within which the data exist from the same class. Prototypes are the center of spheres and their radii are computed by the mid-point of the two distances to the farthest same class point and the nearest another class point. And we transform the prototype selection problem into a set covering problem in order to determine the smallest set of prototypes that include all the training data. The proposed prototype selection method is based on a greedy algorithm that is applicable to the training data per class. The complexity of the proposed method is not complicated and the possibility of its parallel implementation is high. The prototype-based classification learning takes up the set of prototypes and predicts the class of test data by the nearest neighbor rule. In experiments, the generalization performance of our prototype classifier is superior to those of the nearest neighbor, Bayes classifier, and another prototype classifier.

ASSESSING CALIBRATION ROBUSTNESS FOR INTACT FRUIT

  • Guthrie, John A.;Walsh, Kerry B.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1154-1154
    • /
    • 2001
  • Near infra-red (NIR) spectroscopy has been used for the non-invasive assessment of intact fruit for eating quality attributes such as total soluble solids (TSS) content. However, little information is available in the literature with respect to the robustness of such calibration models validated against independent populations (however, see Peiris et al. 1998 and Guthrie et al. 1998). Many studies report ‘prediction’ statistics in which the calibration and prediction sets are subsets of the same population (e. g. a three year calibration validated against a set from the same population, Peiris et al. 1998; calibration and validation subsets of the same initial population, Guthrie and Walsh 1997 and McGlone and Kawano 1998). In this study, a calibration was developed across 84 melon fruit (R$^2$= 0.86$^{\circ}$Brix, SECV = 0.38$^{\circ}$Brix), which predicted well on fruit excluded from the calibration set but taken from the same population (n = 24, SEP = 0.38$^{\circ}$Brix with 0.1$^{\circ}$Brix bias), relative to an independent group (same variety and farm but different harvest date) (n = 24, SEP= 0.66$^{\circ}$ Brix with 0.1$^{\circ}$Brix bias). Prediction on a different variety, different growing district and time was worse (n = 24, SEP = 1.2$^{\circ}$Brix with 0.9$^{\circ}$Brix bias). Using an ‘in-line’ unit based on a silicon diode array spectrometer, as described in Walsh et al. (2000), we collected spectra from fruit populations covering different varieties, growing districts and time. The calibration procedure was optimized in terms of spectral window, derivative function and scatter correction. Performance of a calibration across new populations of fruit (different varieties, growing districts and harvest date) is reported. Various calibration sample selection techniques (primarily based on Mahalanobis distances), were trialled to structure the calibration population to improve robustness of prediction on independent sets. Optimization of calibration population structure (using the ISI protocols of neighbourhood and global distances) resulted in the elimination of over 50% of the initial data set. The use of the ISI Local Calibration routine was also investigated.

  • PDF

A Study on the Optimal Allocation of Korea Air and Missile Defense System using a Genetic Algorithm (유전자 알고리즘을 이용한 한국형 미사일 방어체계 최적 배치에 관한 연구)

  • Yunn, Seunghwan;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.797-807
    • /
    • 2015
  • The low-altitude PAC-2 Patriot missile system is the backbone of ROK air defense for intercepting enemy aircraft. Currently there is no missile interceptor which can defend against the relatively high velocity ballistic missile from North Korea which may carry nuclear, biological or chemical warheads. For ballistic missile defense, Korea's air defense systems are being evaluated. In attempting to intercept ballistic missiles at high altitude the most effective means is through a multi-layered missile defense system. The missile defense problem has been studied considering a single interception system or any additional capability. In this study, we seek to establish a mathematical model that's available for multi-layered missile defense and minimize total interception fail probability and proposes a solution based on genetic algorithms. We perform computational tests to evaluate the relative speed and solution of our GA algorithm in comparison with the commercial optimization tool GAMS.

The Optimal Deployment Problem of Air Defense Artillery for Missile Defense (미사일 방어를 위한 방공포대 최적 배치 문제)

  • Kim, Jae-Kwon;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.98-104
    • /
    • 2016
  • With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units' deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.

Optimal Design of Natural Gas Liquefaction Processes (천연가스 액화공정의 최적설계)

  • Cho, Hyun Jun;Yeo, Yeong-Koo;Kim, Jin-Kuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The paper reviews the state of art in the design of liquefaction processes for the production of liquified natural gas, and addresses key design aspects to be considered in the design and how these design issues are systematically reflected in industrial applications. Various design options to improve energy efficiency of refrigeration cycles are discussed, including cascaded or multi-level pure refrigeration cycles which are used for covering wide range of cooling temperature, as well as mixed refrigerant cycle which can maintain a simple structure. Heat integration technique has been used for graphically examining differences of commercial cycles discussed in this paper, while energy efficiency and economics of commercial liquefaction processes has been summarized. Discussion also has been made about how to select the most appropriate set of drivers for compressors used in the liquefaction plant.