DOI QR코드

DOI QR Code

Optimal Design of Natural Gas Liquefaction Processes

천연가스 액화공정의 최적설계

  • Cho, Hyun Jun (Department of Chemical Engineering, Hanyang University) ;
  • Yeo, Yeong-Koo (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jin-Kuk (Department of Chemical Engineering, Hanyang University)
  • 조현준 (한양대학교 화공생명공학부) ;
  • 여영구 (한양대학교 화공생명공학부) ;
  • 김진국 (한양대학교 화공생명공학부)
  • Received : 2012.08.31
  • Accepted : 2012.09.29
  • Published : 2013.02.01

Abstract

The paper reviews the state of art in the design of liquefaction processes for the production of liquified natural gas, and addresses key design aspects to be considered in the design and how these design issues are systematically reflected in industrial applications. Various design options to improve energy efficiency of refrigeration cycles are discussed, including cascaded or multi-level pure refrigeration cycles which are used for covering wide range of cooling temperature, as well as mixed refrigerant cycle which can maintain a simple structure. Heat integration technique has been used for graphically examining differences of commercial cycles discussed in this paper, while energy efficiency and economics of commercial liquefaction processes has been summarized. Discussion also has been made about how to select the most appropriate set of drivers for compressors used in the liquefaction plant.

본 총설에서는 천연가스 액화공정의 최적설계에서 에너지 효율을 높이기 위해 고려해야 하는 주요 공정설계 인자들에 대한 논의와 상용 LNG 플랜트에서 이러한 인자들이 어떻게 적용되고 있는지에 대하여 살펴보았다. 압축기에서 소모되는 축일의 양을 최소화하기 위한 방법으로서 단일 냉매를 사용하는 냉각 사이클을 다단, 혹은 중첩 구조로 설계하여 온도 범위가 넓은 영역에서 운용하는 방법과 혼합냉매를 사용하여 단순한 사이클 구조를 유지하면서 최적 냉각공급 곡선을 유지하는 방법을 다루었고, 천연가스 액화조건에 맞추어 이러한 구조들의 최적 조합을 구성하는 원리를 소개하였다. 열 통합(heat integration) 기법을 활용하여 상용화 공정들의 특징을 도식적으로 고찰하였으며 아울러 에너지 효율 및 경제성에 대한 분석을 수행하였다. 또한 액화 공정 설계에서 사용되는 대용량의 압축기들을 구동하는 에너지 시스템에 대한 설계 문제를 살펴보았으며 최적설계를 위한 여러 가지 요소들을 고찰하여 보았다.

Keywords

References

  1. Barclary, M. and Denton, N., Selecting Offshore LNG Processes, LNG journal, October, 34-36(2005).
  2. Bronfenbrenner, J., Liu, Y. and Daugherty, T., LNG Liquefaction Cycle Efficiency Analysis, LNG12, May 1998.
  3. Del Nogal, F. L., Kim, J., Perry, S. J. and Smith, R., "Optimal Design of Mixed Refrigerant Cycles," Ind. Eng. Chem. Res., 47(22), 8724-8740(2008). https://doi.org/10.1021/ie800515u
  4. Del Nogal, F. L., Kim, J., Perry, S. J. and Smith, R., "Synthesis of Mechanical Driver and Power Generation Configurations - Part 1: Optimisation Framework," AIChE Journal, 56(9), 2356- 2376(2010).
  5. Del Nogal, F. L., Kim, J., Perry, S. J. and Smith, R., "Synthesis of Mechanical Driver and Power Generation Configurations - Part 2: LNG Applications," AIChE Journal, 56(9), 2377-2389 (2010).
  6. Dossat, R. J., Principles of Refrigeration. Prentice-Hall, New Jersey, US(1997).
  7. Elliott, J. R. and Lira, C. T., Introductory Chemical Engineering Thermodynamics. Prentice-Hall, New Jersey, US(1999).
  8. Finn, A., Technology Choices, LNG Industry, Autumn 2006.
  9. Forg, W., Liquid Energy, Linde Technology: Reports on Science and Technology, Linde, 1, 4-11(2003).
  10. Heiersted, R., Snohvit LNG opening the Barents Sea: A Technological and Environmental Challenge, IChemE meeting, London, UK(2003).
  11. Linnhoff, B., Townsend, D., Boland, D., Hewitt, G., Thomas, B., Guy, A. and Marsland, R., User Guide on Process Integration for the Efficient Use of Energy. IChemE: Rugby, UK(1982).
  12. Mokhatab, S. and Economides, M., "Process Selection is Critical to Onshore LNG Economics," World Oil, 227(2), 95-99(2006).
  13. Kemp, I. C., Pinch Analysis and Process Integration, Second Edition: A User Guide on Process Integration for the Efficient Use of Energy. Butterworth-Heinemann, UK(2007).
  14. Kim, J. and Smith, R., Pinch Design and Analysis in Marcel Dekker: Encyclopedia of Chemical Processing. Marcel Dekker, 2165- 2180(2005).
  15. Klemes, J., Friedler, F., Bulatov, I. and Varbanov, P., Sustainability in the Process Industry: Integration and Optimization, McGraw- Hill, New York, US(2011).
  16. Lee, G., Optimal Design and Analysis of Refrigeration Systems for Low Temperature Processes. PhD Thesis, UMIST, Manchester, UK(2001).
  17. Pek, B., de Jong, E., van Driel, A. and Nagelvoort, R. K., Large Capacity LNG Plant Development, LNG14, Doha, March 2004.
  18. Ransbarger, W., A Fresh Look at LNG Process Efficiency, LNG Industry, Spring 2007.
  19. Robertson, S., Outlook for the LNG Business 2007-2011, www.douglas- westwood.com (accessed on 20 August 2012).
  20. Shukri, T., LNG Technology Selection, Hydrocarbon Engineering, February 2004.
  21. Smith, R., Chemical Process Design and Integration. John Wiley & Sons, Chichester, UK(2005).
  22. Smith, J. M., Van Ness, H. C. and Abbott, M. M., "Introduction to Chemical Engineering Thermodynamics," McGraw-Hill, New York, US(2005).
  23. Splisbury, C., Opitmizing LNG Capacity, IChemE SONG meeting, June 2005.
  24. Vink, K. J. and Nagelvoort, R. K., Comparison of Baseload Liquefaction Processes, LNG12, May 1998.
  25. Wu, G. and Zhu, X. X., Retrofit of Integrated Refrigeration Systems, Chemical Engineering and Research Design, 79(Part A): 163-181(2001). https://doi.org/10.1205/02638760151095980
  26. Zheng, X. and Kim, J., "Optimization of Power-Intensive Energy Systems with Carbon Capture," Ind. Eng. Chem. Res., 50, 11201- 11225(2011). https://doi.org/10.1021/ie200839k

Cited by

  1. Case study on operating characteristics of gas fueled ship under the conditions of load variation vol.40, pp.5, 2016, https://doi.org/10.5916/jkosme.2016.40.5.447
  2. Enhancement of the efficiency of the Open Cycle Phillips Optimized Cascade LNG process vol.112, pp.None, 2013, https://doi.org/10.1016/j.enconman.2016.01.022
  3. Enhancement of the efficiency of the Open Cycle Phillips Optimized Cascade LNG process vol.112, pp.None, 2013, https://doi.org/10.1016/j.enconman.2016.01.022
  4. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants - Analytical approach vol.121, pp.None, 2013, https://doi.org/10.1016/j.enconman.2016.05.013
  5. Thermodynamic, Economic and Environmental Analyses of Ammonia-Based Mixed Refrigerant for Liquefied Natural Gas Pre-Cooling Cycle vol.9, pp.8, 2013, https://doi.org/10.3390/pr9081298