• Title/Summary/Keyword: Sesquiterpene glycoside

Search Result 6, Processing Time 0.016 seconds

Tissue Factor Inhibitory Sesquiterpene Glycoside from Eriobotrya japonica

  • Lee, Ming-Hong;Son, Yeon-Kyoung;Han, Yong-Nam
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.619-623
    • /
    • 2004
  • Tissue factor (TF, tissue thromboplastin) is a membrane bound glycoprotein, which acceler-ates the blood clotting, activating both the intrinsic and the extrinsic pathways to serve as a cofactor for activated factor VII (Vila). The TF-factor Vila complex (TF/VIIa) proteolytically activates factors IX and X, which leads to the generation of thrombin and fibrin clots. In order to isolate TF inhibitors, by means of a bioassay-directed chromatographic separation technique, from the leaves of Eriobotrya japonica Lindley (Rosaceae), a known sesquiterpene glycoside (2) and ferulic acid (3) were isolated as inhibitors that were evaluated using a single-clotting assay method for determining TF activity. Another sesquiterpene glycoside (1) was also isolated but was inactive in the assay system. Compound 3 was yielded by alkaline hydrolysis of compound 2. The structures of compounds 1, 2, and 3 were identified by means of spectral analysis as $3-O-{\alph}-L-rhamnopyranosyl-(1{\rightarrow}4)-a-L-rhamnopyranosyl-(1{\rightarrow}2)-[{\alph}-L-rhamnopyrano-syl-(1{\rightarrow}6)]-{\beta}-D-glucopyranosyl nerolidol$ (1), $3-O-{\alph}-L-rhamnopyranosyl-(1{\rightarrow}4)-{\alph}-L-rhamnopyr-anosyl-(1{\rightarrow}2)-[{\alph}-L-(4-trans-feruloyl)-rhamnopyranosyl-(1{\rightarrow}6)]-{\beta}-D-glucopyranosyl$ nerolidol (2) and ferulic acid (3), respectively. Compounds 2 and 3 inhibited 50% of the TF activity at con-centrations of 2 and $369{\;}\mu\textrm{m}/TF$ units, respectively.

A New Sesquiterpene Lactone from Artemisia rubripes Nakai

  • Lee, Kyu-Ha;Min, Yong-Deuk;Choi, Sang-Zin;Kwon, Hak-Cheol;Cho, Ock-Ryun;Lee, Kang-Choon;Lee , Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1016-1019
    • /
    • 2004
  • The chromatographic separation of a methylene chloride extract of Artemisia rubripes led to the isolation of a new sesquiterpene lactone (3), together with four known compounds, a coumarin (2) and three terpenes (1, 4, and 5). Their structures were characterized to be $1{\beta},6{\alpha}$- dihydroxy-4(15)-eudesmene (1), scopoletin (2), $1{\alpha},4{\beta}-dihydroxy-8{\alpha}$-acetoxy-guaia-2,10(14), 11(13)-triene-6,12-olide (3), $1{\alpha},4{\beta}$ -dihydroxy-8${\alpha}$-acetoxy-guaia-2,9,11(13)-triene-6,12-olide (4), and $\beta$ -sitosterol-3-O-${\beta}$-D-glycoside (5) by spectroscopic means.

Sesquiterpenes from Syneilesis palmata and Their Cytotoxicity Against Human Cancer Cell Lines In Vitro

  • Lee Kyu Ha;Cho Sang Un;Lee Kang Ro
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.280-284
    • /
    • 2005
  • The chromatographic separation of the MeOH extract from the aerial parts of Syneilesis palmata led to the isolation of a new sesquiterpene glycoside 4, together with four known compounds. Their structures were characterized to be 4$\beta$,5$\beta$-epoxy-caryophill-8,(15)-ene (1), 3$\beta$­hydroxy-gultin-5-ene (2), 4$\alpha$,5$\beta$-dihydroxy-caryophill-8,(15)-ene (3), (-)-oplopan-4-one-10-$\alpha$-O­$\beta$-D-glucose (4) and 3-hexenyl-1-O-$\beta$-D-glucopyranose (5), based on spectroscopic and chemical methods. Compound 2 showed moderate cytotoxicity against five human tumor cell lines in vitro with its EDso values ranging from 5.90-1 0.83 $\mu$g/mL.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

Alpha-Glucosidase Inhibitory Activity of Saponins Isolated from Vernonia gratiosa Hance

  • Pham Van Cong;Hoang Le Tuan Anh;Le Ba Vinh;Yoo Kyong Han;Nguyen Quang Trung;Bui Quang Minh;Ngo Viet Duc;Tran Minh Ngoc;Nguyen Thi Thu Hien;Hoang Duc Manh;Le Thi Lien;Ki Yong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.797-805
    • /
    • 2023
  • Species belonging to the Vernonia (Asteraceae), the largest genus in the tribe Vernonieae (consisting of about 1,000 species), are widely used in food and medicine. These plants are rich sources of bioactive sesquiterpene lactones and steroid saponins, likely including many as yet undiscovered chemical components. A phytochemical investigation resulted in the separation of three new stigmastane-type steroidal saponins (1 - 3), designated as vernogratiosides A-C, from whole plants of V. gratiosa. Their structures were elucidated based on infrared spectroscopy (IR), one-dimensional (1D) and two-dimensional nuclear magnetic resonance (2D NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and electronic circular dichroism analyses (ECD), as well as chemical reactivity. Molecular docking analysis of representative saponins with α-glucosidase inhibitory activity was performed. Additionally, the intended substances were tested for their ability to inhibit α-glucosidase activity in a laboratory setting. The results suggested that stigmastane-type steroidal saponins from V. gratiosa are promising candidate antidiabetic agents.

Isolation of Anticonvulsant Compounds from the Fruits of Schizandra chinensis$B_{AILI}$ (오미자(Schizandra chinensis $B_{AILI}$.) 열매로부터 항경련 활성물질의 분리)

  • Han, Jae-Taek;Ahn, Eun-Mi;Park, Jin-Kyu;Cho, Sung-Woo;Jeon, Seong-Gyu;Jang, Joong-Sik;Kim, Choong-Kwon;Choi, Soo-Young;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.72-77
    • /
    • 2000
  • The repeated silica gel colum chromatographies of EtOAc fraction, showing anticonvulsant activity, obtained from MeOH extracts of Schizandra chinensis B. fruits led to isolation of a sesquiterpenoid, four lignans and a sterol glycoside. Their chemical structures were determined to be chamigrenal, gomisin A, gomisin H, gomisin N. schizandrin and daucosterol. Among them, schizandrin and daucosterol inhibited GABA degrative enzymes, succinic semialdehyde dehydrogenase and succinic semialdehyde reductase, respectively. It is postulated that the schizandrin and daucosterol are able to elevate the neurotransmitter GABA levels in central nervous system by inhibitory action on GABA degrative enzymes and act as anticonvulsant drugs.

  • PDF