• Title/Summary/Keyword: Sesame Oil

Search Result 382, Processing Time 0.025 seconds

Determination of the Adulteration of Sesame Oils Sold in Markets by Gas Chromatography (시중 참기름에 혼입된 이종기름에 관하여)

  • 유영찬;박유신;정희선;정진일
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • This study primarily attempted to establish the method for the determination of the adulteration in the sesame oil. First of all, extensive experiment was conducted to determine the composition of genuine sesame oil prepared from Korean, Japanese, Taiwanese and Chinese sesame seed. Sesamin and sterols in unsaponfiable matter were examined along with fatty acid in saponifiable fraction by Gc. There was no significant difference in the composition of sesamin and sterols in sesame oils prepared from Korean and foreign seeds. The ranges of sesamin and ${\beta}-sitosterol$ against campesterol were 3.32~5.46 and 2.39~2.99 respectively in all samples. Similiar composition of fatty acids was showed in all pure sesame oils, in which the contents were 8.37~lO.09% palmitic acid, 4.61~5.50% stearic acid, 35.24~39.97% oleic acid, 43.04~49.76% linoleic acid, O.21~O.31% linolenic acid and 0.40~O.69% arachidic acid. Among the commercial sesame oils sold in Markets, three sesame oils from Japan revealed low sesamin, high linoleic acid and linolenic acid, and low oleic acid and stearic acid, suggesting the adulteration with soybean oil.

  • PDF

The Changes of Body Fat Accumulation, Serum Lipids and Platelet Functions in Rat Fed the Diet Containing Different Common Oils in Korea: Sesame oil, Perilla oil, Rice Bran oil and Mixed oil (급원이 다른 식이 지방이 흰쥐의 지방대사와 혈소판 성상에 미치는 영향 -참깨유, 들깨유, 미강유 중심으로-)

  • 김숙희
    • Journal of Nutrition and Health
    • /
    • v.26 no.5
    • /
    • pp.513-523
    • /
    • 1993
  • In this experiment, we investigated the hypolipidemic and antithrombotic effects of rats fed diets with different common oils in Korea for different feeding periods(4 weeks or 12 weeks), using Korean sesame oil, perilla oil, rice bran oil and mixed oil. W-3/w-6 ratio of each group was 0.001, 1.44, 0.03 and 0.112, respectively. P/S ratio of each group was 9.64, 10.49, 5.58 and 1.68, respectively. The result were as follows: 1) According to the age, body fat accumulation was increased. 2) Perilla oil(w-3 rich) decreased total lipid, triglyceride and total cholesterol, and increased HDL/total cholesterol ratio. 3) With regard to the compositono of platelet fatty acids, Perilla oil increased w-3/w-6 ratio of the platelet. Perilla oil lengthened bleeding time and decreased MDA(MalonDAdehyde) formation which determined in place of Thromboxane A2(TXA2) in platelet. This result can suggest that linoleic acid of perrilla oil seem to supress the conversion of linoleic acid to arachidonic acid(AA 20:4, w-6) and eicosapentaenoic acid(EPA, 20:5, w-3) trannnsformed from linolenic acid to suppress the conversion of arachidonic acid to TXA2. Since TXA2 is platelet-aggregating and vasoconstricting agent, the reduction of TXA2 tgeneration by platelet with increased linolenic acid intakes shows prologed bleeding time. In conclusion, w-3 rich perilla oil has strong hypolipidemic and antithrombotic effects by changing fatty acid profiles of the platelet.

  • PDF

Monitoring and Optimization of the Effects of the Blending Ratio of Corn, Sesame, and Perilla Oils on the Oxidation and Sensory Quality of Seasoned Laver Pyropia spp.

  • Cho, Suengmok;Kim, Jiyoung;Yoon, Minseok;Yang, Hyejin;Um, Min Young;Park, Joodong;Park, Eun-Jeong;Yoo, Hyunil;Baek, Jeamin;Jo, Jinho
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.27-33
    • /
    • 2015
  • Seasoned laver Pyropia spp. is one of the most well-known Korean traditional seafoods, and is becoming more popular worldwide. Various mixed oils are used in the preparation of seasoned laver; however, there is no information available regarding the effects of the blending ratio of oils on the quality of seasoned laver. In this study, the effects of the blending ratio of corn, sesame, and perilla oils on the oxidation and sensory quality of seasoned laver were monitored and optimized using a response surface methodology. An increase in the proportion of corn and sesame oils resulted in an excellent oxidation induction time, whereas a high ratio of perilla oil reduced the thermal oxidative stability of the mixed oil. In the sensory test, the seasoned laver with the highest proportion of sesame oil was preferred. The optimal blending ratio (v/v) of corn, sesame, and perilla oils for both oxidation induction time ($Y_1$) and sensory score ($Y_2$) was 92.3, 6.0, and 1.7%. Under optimal conditions, the experimental values of $Y_1$ and $Y_2$ were $4.41{\pm}0.3h$ and $5.58{\pm}0.8$points, and were similar to the predicted values (4.34 h and 5.13 points). Our results for the monitoring and optimization of the blending ratio provide useful information for seasoned laver processing companies.

The Comparison in the Physicochemical Properties of Sesame Seeds by Producing Areas (산지에 따른 참깨종자의 이화학적 특성 비교)

  • Lee, Min-Jung;Kim, Ki-Hong
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.128-131
    • /
    • 2005
  • Sesame seed is known as a good nutritional source containing high oil (51%) and protein (20%). Sesame oil contains a very high oxidative stability compared to other vegetable oils. To obtain basic information for quality evaluation, imported and domestic sesame seeds were investigated to measure general components (ash, protein, moisture and oil), fatty acid composition and lignan content. Although the protein contents were the highest in domestic sesame seeds, yet the lipid contents were the highest in imported sesame seeds. Unsaturated fatty acids such as oleic acid and linoleic acids were the highest in the domestic sesame seeds. Lignan contents, the most important component known as antioxidant, were significantly higher in domestic sesame seeds than other imported sesame seeds. These results suggest that domestic sesame seed may have the best quality in terms of the functional components.

Studies on the Physicochemical Characteristics of Sesame with Roasting Temperature (볶음과정에서의 참깨의 물리화학적 특성변화)

  • Kim, Hyeon-Wee;Jeong, So-Young;Woo, Sun-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1137-1143
    • /
    • 1999
  • The change of physicochemical characteristics of sesame with roasting temperature$(110^{\circ}C{\sim}230^{\circ}C)$ were investigated to get a useful index which needs to manufacture roasted sesame and sesame oils, In the physicochemical properties of roasted sesame, the contents of moisture, specific volume, oil yields and sesame cakes were changed significantly above $170^{\circ}C$. Fat and protein in sesame cakes were changed slightly. Desirable roasting temperature was $220^{\circ}C$ in considering oil yields and sensory qualities. Total amino acids such as arginine, serine, threonine, lysine. cystine, tyrosine and most of the free amino acids, and sucrose of free sugars were reduced significantly above $170^{\circ}C$ and $190^{\circ}C$. respectively. These reductions of sugar and amino compounds were assumed to play an important role in Maillard reaction for the formation of browning pigment, taste and aroma. It was confirmed that this reaction was pyrolytic degradation which took place in water-deficient and oil-rich system at relatively high temperature.

  • PDF

Quality characteristics of sesame oil obtained from imported sesame (Sesamum indicum) (참깨의 수입 형태에 따른 참기름의 품질 특성)

  • Choi, Ji-Young;Bae, Suin;Kim, Jiyoon;Kim, Jungsoo;Moon, Kwang-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.309-315
    • /
    • 2019
  • In this study, the physicochemical characteristics of imported whole sesame oil (WS; WS1, WS2), imported sesame powder oil (SP; SP1, SP2), sesame oil mixed with imported whole sesame and sesame powder (WSP; WSP1, WSP2) were analyzed and their quality characteristics were compared according to the imported raw material type. $L^*$ and $b^*$ values of WS1 were the lowest and the browning index was significantly high. WS2 showed contrasting results. The redness of sesame oil was high due to its high acid value. The correlation value showed a low acid value as the content of saturated fatty acid was high. SP showed low values for antioxidant property and overall preference. The overall preference score of sensory evaluation showed the highest positive correlation with the score, suggesting that SP lacked the unique fragrance. Therefore, SP lacked the specific aroma and antioxidant property.

Comparison of Quality Characteristics of Sesame Oil and Blend Oil by Using Component Analysis and NIR Spectroscopy (참기름과 혼합유의 성분 및 NIR Spectrum 분석을 통한 품질특성 비교)

  • Joo, Jae-young;Yeo, Yong-heon;Lee, Namrye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.739-743
    • /
    • 2017
  • Product distribution and consumption in the military is difficult due to unique contracts and supply systems. It is difficult to change suppliers immediately when quality problem is encountered. Due to these special circumstances, the quality of products must be thoroughly controlled. Sesame oil is used to increase the taste and nutrition of food, but it is more expensive than other cooking oils. Oil producers may blend other cooking oils with sesame oil to make higher profits, so it has become important to identify good and bad products. In this study, pure sesame oil and blend oils were compared by analyzing their smell, taste, chemical components, and near infra-red spectra to determine quality differences between them.

Reduction of Benzo(a)pyrene Content in Sesame Oil by Using Adsorbents (흡착제를 이용한 참기름의 벤조피렌 저감화)

  • Choi, Seung Kwan;Choe, Su Bin;Kang, Sung Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.564-569
    • /
    • 2014
  • This study was conducted to reduce benzo(a)pyrene in sesame oil by addition of several kinds of absorbents (active carbon, diatomaceous earth, kaolin, acid clay, perlite, and silicate). Sesame oil containing 4.1 ppb benzo(a)pyrene was stirred with 0.2% (w/w) several kinds of adsorbents at $40^{\circ}C$ for 30 min. Active carbon resulted in the highest reduction of benzo(a)pyrene in sesame oil among the investigated adsorbents, and decolorization was observed only by using silicate. Reduction of benzo(a)pyrene was optimized by controlling amount the of active carbon, stirring time, and stirring temperature. Futher, 4.1 ppb benzo(a)pyrene in sesame oil was reduced by up to 0.91 ppb by adding 0.5% (w/w) active carbon and stirring for 30 min at $70^{\circ}C$. Optimized conditions were applied to sesame oil (2.14~4.11 ppb) purchased from a Gyeonggi traditional market, and benzo(a)pyrene in sesame oil was reduced by up 0.43~0.86 ppb.

Quality Evaluation of Sesame Oil by High Performance Liquid Chromatography (고속액체크로마토그라피를 이용한 참기름의 품질평가)

  • Hwang, Kyong-Soo;Hawer, Wooderck S.;Nam, Young-Jung;Min, Byong-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.348-352
    • /
    • 1984
  • Sesamolin and sesamin in the five domestic varieties and seven of imported sesame seed were analyzed by High Performance Liquid Chromatography to evaluate quality of sesame oil. Their stability against roasting, changes of content during storage of sesame oil and differences in carry-through ratio by extracting method were also analyzed. The results indicated that the HPLC method was simple, rapid and reliable in the evaluation of sesame oil quality.

  • PDF

Minimizing Benzo(a)pyrene Content in the Manufacturing of Sesame Oil and Perilla Oil (참기름과 들기름의 제조조건에 따른 벤조피렌 함량 변화)

  • Kim, Hyong-Yol;Song, Dae-Sik
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2008
  • This study was carried out to identify the cause of benzo(a)pyrene[B(a)P] production during the manufacture of sesame oil and perilla oil, and to minimize such B(a)P synthesis. The distribution of B(a)P in sesame seed and perilla seed differed with seed-growing district, the range was $0.06{\sim}0.31{\mu}g/kg$ in domestic seed and $0.12{\sim}0.47{\mu}g/kg$ in imported seed. B(a)P contents after roasting at $220^{\circ}C$ for 20 min in sesame seed and perilla seed were $1.87{\sim}2.47{\mu}g/kg$ and $2.12{\sim}2.43{\mu}g/kg$, respectively, and levels in oils obtained from the roasted seeds were $3.68{\mu}g/kg$ and $4.64{\mu}g/kg$, respectively. These data refer to seeds subjected to codsed roasting. With open roasting, the levels were $0.63{\mu}g/kg$ and $0.56{\mu}g/kg$, respectively. Closed roasting resulted in absorption of B(a)P, with consequent high levels in oils. We introduced forced ventilation during closed roasting. We tested various methods to remove B(a)P from sesame oil and perilla oil. Neither centrifugation nor filtering with diatomite and diatomiteactive carbon removed B(a)P. A filtering method using active carbon was effective. But this method adversely affected the color and flavor of sesame oil and perilla oil.