• Title/Summary/Keyword: Servo motor control

Search Result 792, Processing Time 0.031 seconds

Development of Speed Control System for SPMSM with Direct Torque Control (직접토크 제어에 의한 SPMSM 속도제어시스템 개발)

  • Kim, Dong-Hee;Lim, Tae-Hoon;Baik, Won-Sik;Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.66-74
    • /
    • 2005
  • This paper presents an implementation of digital servo speed control system of SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) for industrial application with Direct Torque Control(DTC) using TMS320F2812 DSP. Although, the vector control scheme is adapted in many industrial servo system, but the DSP calculation ratio is increased by reference frame transformation and SVPWM of vector control. Therefore, this paper investigate the possibility of DTC scheme for industrial servo drive system instead of vector control scheme. DSP calculation ratio is compared between vector control and DTC algorithm in addition to the characteristic of speed control response. The suggested SPMSM control system shows the possibility of DTC scheme for industrial servo motor drive system instead of a vector control algorithm.

Automatic Tension Control of a Timber Carriage Used for Biomass Collection

  • Choi, Yun-Sung;Oh, Jae-Huen;Euh, Seung-Hee;Oh, Kwang-Cheor;Choi, Hee-Jin;Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Purpose: A lab-scale timber carriage using a servo motor system was built. When two motors move a carriage, wire tension is changed according to the different line speeds caused by a wire drum's changing diameter, leading to inappropriate traveling characteristics of the carriage. In order to overcome this problem, PID Control was used to control the motor speed. Methods: Ziegler-Nichols method was used to determine PID gains. Results: The initial PID gains were 1.8, 0.025, and 0.006, respectively, and optimal gains of 1.4 and 0.010 for P and I gain were obtained experimentally. Conclusions: The results showed that constant wire tension could be maintained by controlling the speed of the motor using PI control. Overshoot occurred at initial motor operation due to vibration and elasticity of the wire itself.

A Study on the Current Control Method for Torque Ripple Reduction of Brushless DC Motor (브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류 제어 방식에 관한 연구)

  • 이광운;홍희정;박정배;여형기;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.342-346
    • /
    • 1998
  • The brushless DC motor with trapezoidal back emfs has torque ripple due to phase commutation. The torque ripple generates noise and vibration and cause errors in position control so this makes the brushless DC motor less suitable for high performance servo applications. In this paper, we propose a new current control method to reduce the torque ripple due to commutation, when the unipolar PWM method is applied for the phase current control of brushless DC motor.

  • PDF

Model Following Acceleration Control Strategy for the Robustness Control of DC Servo Position Control Systems (직류서보 위치제어시스템의 강인성 제어를 위한 모델추종 가속도제어기법)

  • Park, Young-Jeen;Cha, Min;You, Young-Suk;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.270-273
    • /
    • 1996
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the robustness control of DC servo position control systems. The proposed system is composed of LMFC, variable structure feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

Constant Speed Control of Shaft Generating System Driven by Hydrostatic Transmission for Ship Use (유압구동식 선박용 축발전장치의 정속제어)

  • 정용길;이일영;양주호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2023-2032
    • /
    • 1993
  • This study suggests a new type shaft generating system driven by hydrostatic transmission suitable for small size vessels. Since the shaft generating system is affected ceaselessly by disturbances such as speed variation in pump driving speed and variation in external load, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study, a digital robust servo control algorithm is applied to the controller design. By the experiment and the numerical computation, the frequency variation characteristics of the generating system under various disturbances are investigated. Conclusively, it is said that the shaft generating system proposed in this study shows excellent control performances.

An Analysis of Static and Dynamic Characteristics of Torque Motor (토크모터의 정특성과 동특성 해석)

  • Huh, J.Y.;Park, C.S.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • In the early of 1950, the high response magnetic torque motor was developed for driving electro-hydraulic servo valves. Since then it has been broadly used for industrial application and the research of development or improvement of the torque motor is still being conducted. The purpose of this study is to present useful design criteria for the torque motor design. For this, torque motor is modelled and linearized. The static characteristics of the torque motor are investigated by direct computation of the derived linearlized equations. The dynamic characteristics of the torque motor are investigated with the derived transfer function by using Matlab and compared with the results of the linearlized analysis by using AMESim simulation with actual values of the physical parameters. Finally, the design criteria obtained from the analysis are reviewed.

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

Design of a DSP Controller and Driver for the Power-by-wire(PBW) System Using BLDC Servo Motor (BLDC 전동기를 이용하는 직동력(PBW) 구동시스템의 제어기 및 구동기 설계)

  • Joo, Jae-Hun;Goo, Bon-Min;Kim, Jin-Ae;Zo, Dae-Seong;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.897-900
    • /
    • 2007
  • This paper presents a study on the DSP controller and IGBT inverter driver design for the power-by-wire(PBW) system using BLDC servo motor. This BLDC servo motor system was realized with DSP(Digital Signal Processor) and IGBT inveter module. The PBW system needs speed control of servo motor for linear thrust action. This paper implements a servo controller with vector control and min-max PWM technique. As CPU of controller, TMS320F2812 DSP was adopted because it has PWM(Pulse Width Modulation) waveform generator, A/D(Analog to Digital) converter, SPI( Serial Peripheral Interface) port and many input/output port etc.

  • PDF

A Study on Tracking Control for Networked Multi-Motor Systems

  • Lee, Hong-Hee;Jung, Eui-Heon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1897-1900
    • /
    • 2004
  • In recent years, a lot of industrial equipments have serial communication channel such as FieldBus (CAN, Profibus, etc.) or Ethernet that provides real time communication between industrial equipments. Theses applications include gantry crane, robot, chip mounter, etc.. In this paper, we discuss the synchronization technique for networked multi-motor systems where controllers (commercial servo amps) are distributed and interconnected by CAN (Controller Area Networks). We first describe the equivalent model for the individual servo-amp and motor using the frequency response. We design the $H{\infty}$ controller for motion synchronization. Finally, the synchronization technique using the equivalent model and the $H{\infty}$ controller is verified by the simulation and the experiment.

  • PDF