• Title/Summary/Keyword: Servo motor

Search Result 999, Processing Time 0.033 seconds

Design of Optimized Fuzzy Cascade Controller Based on HFCGA for Ball & Beam System (볼빔 시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적 퍼지 Cascade 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.391-398
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. The displacement change the position of ball leads to the change of the angle of the beam which determines the position angle of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling factors) of each fuzzy controller using HFCGA. The inner controller controls the position of lever arm which corresponds to the position angle of a servo motor and the outer controller decides the set-point value of the inner controller. HFCGA is a kind of parallel genetic algorithms(PGAs), and helps alleviate the premature convergence being generated in conventional genetic algorithms (GAs). For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Robust Control of Permanent Magnet Synchronous Motor using Fuzzy Logic Controller (퍼지논리 제어기를 이용한 영구자석 동기전동기의 강인성 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Chae, So-Hyung;Kim, Chun-Sam;Yoo, Bo-Min
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1228-1230
    • /
    • 1992
  • The permanent magnet synchronous motor(PMSM) is receiving Increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. By vector-controll method, PMSM has the same operating characterics as seperately excited dc motor. The drive system of servo motor is requested to have an accurate response for the reference input and a quick recovery for the disturbance such as load torque. However, when the unknown disturbances and parameter variations are imposed on the permanent magnet synchronous motor(PMSM), the drive system is significantly effected by them. As a result, the drive system with both a fast compensation and a robustness to a parameter variations is requested. This paper investigates the possibility of applying the fuzzy logic controller(FLC) using Multi-Rule Base In a servo motor control system. In this paper, The five Rule Bases(1 to 5) are selected to recover the state error caused by the disturbance in steady state. In the initial operating mode. Rule Base 0 is used. To show the validity of the proposed fuzzy logic controll system, the computer simulation results are provided.

  • PDF

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

A Study on the Speed Control of Induction Motor using a PID Controller and Neural Network Controller (PID제어기와 신경회로망 제어기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1993-1997
    • /
    • 2009
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation.

The Slip Frequency Vector Control of AC Servo Motor by Cycloconverter Drive System (싸이크로 콘버어터에 의한 교류 전동기 슬립주파수 벡터 제어에 관한 연구)

  • Hong, Soon-Ill;Kim, Sung-Ra
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.400-402
    • /
    • 1996
  • The paper describes the control strategy and hardware design for forced commutation cycloconverter which was developed for ac servo motor drive application of vector control. 12-pulse cycloconverter is used to investigate experimentally the performance of an induction motor drive system. The cycloconverter has the facility for continuous control of both the frequency and magnitude of the output voltage to keep a constant flux in the induction motors.

  • PDF

CNC milling experiments using a variable structure control (가변구조제어기를 사용한 CNC 공작기계의 절삭실험)

  • 김정호;은용순;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.852-855
    • /
    • 1996
  • A variable structure controller is developed for an AC servo motor used in CNC milling machines. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. The robustness parameter is tuned for a fast response when the speed tracking error is large, while it is tuned for small oscillations when the speed tracking error is small. The designed controller is installed on a CNC machine using a PC. Cutting experiments show improved performance over the factory-designed controller.

  • PDF

Design and Implementation of High Speed Pulse Motor Controller Chip (고속 펄스 모터 콘트롤러 칩의 설계 및 구현)

  • 김원호;이건오;원종백;박종식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.848-854
    • /
    • 1999
  • In this paper, we designed and implemented a precise pulse motor controller chip that generates the pulse needed to control step motor, DC servo and AC servo motors. This chip generates maximum pulse output rate of 5Mpps and has the quasi-S driving capability and speed and moving distance override capability during driving. We designed this chip with VHDL and executed a logic simulation and synthesis using Synopsys tool. The pre-layout simulation and post-layout simulation was executed by Compass tool. This chip was produced with 100 pins, PQFP package by 0.8${\mu}{\textrm}{m}$ gate array process and implemented by completely digital logic. We developed the test hardware board of performance and the CAMC(Computer Aided Motor Controller) Agent softwate to test the performance of the pulse motor controller chip produced. CAMC Agent enables user to set parameters needed to control motor with easy GUI(Graphic User Interface) environment and to display the output response of motor graphically.

  • PDF

An Analysis of Static and Dynamic Characteristics of Torque Motor (토크모터의 정특성과 동특성 해석)

  • Huh, J.Y.;Park, C.S.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • In the early of 1950, the high response magnetic torque motor was developed for driving electro-hydraulic servo valves. Since then it has been broadly used for industrial application and the research of development or improvement of the torque motor is still being conducted. The purpose of this study is to present useful design criteria for the torque motor design. For this, torque motor is modelled and linearized. The static characteristics of the torque motor are investigated by direct computation of the derived linearlized equations. The dynamic characteristics of the torque motor are investigated with the derived transfer function by using Matlab and compared with the results of the linearlized analysis by using AMESim simulation with actual values of the physical parameters. Finally, the design criteria obtained from the analysis are reviewed.

Design of Microprocessor Embedded 2-Axis Motor Control Chip (Microprocessor Embedded 2-Axis Motor Control Chip의 설계)

  • Roh, Kyu-Jin;Choi, Sung-Hyuk;Won, Jong-Baek;Kim, Jong-Eun;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.193-196
    • /
    • 2001
  • In this paper we designed CAMC-SP, the microprocessor embedded 2-axis motor control chip which controls a precise pulse motor by generating the pulse needed to control step motor, DC servo and AC servo motor. This design enables to decrease costs and to minimize a size. First we designed risc type 8-bit microprocessor compatible with PIC16C84, second we designed pulse motor controller. CAMC-SP is integrated of those two block. We designed CAMC-SP by VHDL and we testified to the Performance of it by performing functional simulation.

  • PDF

Thermal Characteristic Analysis of a High-Speed HMC with Linear Motor and Magnetic Bearing (리니어모터와 자기베어링을 채용한 초고속 HMC의 열특성 해석)

  • Kim, S. I.;Lee, W. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.11-15
    • /
    • 2002
  • This paper presents the thermal characteristic analysis of a high-speed HMC with spindle speed of 50,000rpm. The spindle is supported by two radial and axial magnetic bearings. and the built-in motor is located between the axial and rear radial magnetic bearings. The X-axis and Y-axis feeding systems are composed of linear motor and linear motion guides, and the Z-axis feeding system is composed of servo-motor, ballscrew and linear motion guide. The thermal analysis model of high-speed HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on the temperature distribution and thermal deformation under the conditions related to the heat generation of built-in motor, magnetic bearings, linear motors, servo-motor, ballscrew, and so on.

  • PDF