• Title/Summary/Keyword: Servo control

Search Result 1,728, Processing Time 0.035 seconds

A Study on Vector Control of Permanent Magnet Synchronous Motor Using TMX320F2812 (TMX320F2812를 이용한 영구자석형 동기 전동기의 벡터 제어에 관한 연구)

  • 홍선기
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.123-128
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has perip -heral devices to control AC servo system, the servo technology has met a new development opportunity. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F2812 version C which has the performance of fast speed, 150MIPS, and rich peripheral interface is used. Also space vector pulse width modulation (SVPWM) and the digital PI control are implemented to the servo control system.

A Study on PLL Speed Control System of DC Servo Motor for Mobile Robot Drive (자립형 이동로봇 구동을 위한 직류 서보전동기 PLL 속도제어 시스템에 관한 연구)

  • 홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.60-69
    • /
    • 1993
  • The speed control associated with dc servo motors for direct-drive applications of mobile robot is considered in this study. Robot is moved by power wheeled steering of two dc servo motors mounted to it. In order to cooperate with micro-computer and to achieve the high-performance operation of dc servo motor, speed control system is composed of a digital Phase Locked Loop and H-type drive circuit. And the motor is driven by Pulse Width Modulations. In controlling PWM, it is modified to compose of H-type drive circuit with feedback diodes and switching transistor and design of control sequence so that it may show linear characteristics. As a result, speed characteristics of motor showed linear features. In order to get data on design of PLL control system, the parameters of 80[W[ motor & robot device is measured by simple software control. The PLL speed control system is schemed and designed by leaner drive circuit and measured parameters. A complete speed control system applied to 80[W] dc servo motor showed good linearity, stability and high response. Also, it is verified that the PLL speed control system has good compatibility as a mobile robot driver.

  • PDF

Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation (네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어)

  • Kim, Bong-Keun;Park, Hyun-Taek;Chung, Wan-Kyun;Suh, Il-Hong;Song, Joong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

A Study on the Self Tuning Control System for Servo Motor Drives (서보전동기 운전을 위한 자기동조제어 시스템에 관한 연구)

  • 오원석;이윤종
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.122-132
    • /
    • 1993
  • In this paper, a self tuning control algorithm is proposed for the high performance drive of DC servo motor, which is adequate to the servo system having frequent load variation. In order to realization of the algorithm, the control system is developed using a fixed point high speed digital signal processor. TMS320C25. Control algorithm is composed of two parts. One is estimation law part using recursive least mean square method, the other is control law part using minimum variance control method. For the purpose of easiness of applying adaptive algorithm, developed control system is based o PC-DSP structure which can develop, debug programs and monitor the dynamic behaviors,etc. Through computer simulation and experimental results, it was verified that proposed control system could estimate system parameters and was robust to the variation of the load and as a result, was adequate to the servo motor drives.

  • PDF

The Development of Automatic Design Software for DC Motor Servo Controller (DC 모터 서보 제어기의 자동 설계 S/W 개발)

  • Huh, Kyung-Moo;Lee, Eun-O;Cho, Young-June
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.888-893
    • /
    • 2000
  • This paper deals with the development of an automatic design software for DC servo motor control, which provides good performance with rapid response and velocity control accuracy. In the proposed method, the design is automatically executed using Matlab, and iterative learning control algorithms are used in the design process. We applied this method to 50W, 100W, 200W, 300W, 500W, 750W, 1.8kW and 4.5kW DC servo motors which are widely used in the industry. We compare the results of the manual tuning design method with that of the automatic design method presented in this paper. From the experimental results, we can find that the performance of the proposed method is better than that of the manual tuning design method.

  • PDF

A Study on Position Control of an Electro-Hydraulic Servo System Using High Speed On-Off Valves (고속전자밸브를 사용한 전기유압서보시스템의 위치제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 1999
  • This paper presents position control of an electro-hydraulic servo system whoch is operated by four 2-2way high speed on-off valves with either PWM PID control method or sliding mode control method, The advantages of using high speed on-off valves instead of electo-hydraulic servo valves or electro-hydraulic proportional valves are low price robustness for oil contamination and direct control without a D/A converter. The system consists of load cylinder inertia car potentiometer and external load cylinder. The experiments were carried out under several conditions and the results were compared. As a result the sliding mode method has shown good control performance and the robust and stable positioning of the elector-hydraulic servo system can be achieved accurately.

  • PDF

LQ-Servo Design for Automatic Train Control of Urban Rail Vehicle (도시 철도 차량의 자동주행을 위한 LQ-서보 제어기의 설계)

  • Kim, Chang-Hyun;Kim, Yong;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1594-1601
    • /
    • 2014
  • In this paper, we propose the LQ servo control method for the automatic train control of urban rail vehicle. Structures of the conventional PID control and LQ servo controller are compared in order to demonstrate the simplicity of the proposed controller which doesn't have zeros of the closed loop systems. The energy consumption is dealt with as an object function to be minimized, which consists of the quadratic performance indices for optimal control with the input of the feedback linearization. The effectiveness of the proposed method is shown by the practical example, compared with the conventional PD controller.

Study for Tracking Control of Autonomous Underwater Vehicle (AUV의 궤적제어에 관한 연구)

  • 유휘룡;김성근;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1994
  • This paper presents a design method of multivariable robust servo system for tracking control system for AUV(Autonomous Underwater Vehicle). In order to obtain the basic data for the design of the tracking control system, the control algorithm is evaluated in the view of computer simulation results. The tracking control is carried out for an AUV with 2 main thrusters, 2 side thrusters and 2 thrusters for the movement to up-down direction. The results of computer simulation show that the proposed multivariable servo system design method is an efficient method for the control performance of tracking control system of AUV under severe underwater environment.

  • PDF

Servo control strategy for uni-axial shake tables using long short-term memory networks

  • Pei-Ching Chen;Kui-Xing Lai
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.359-369
    • /
    • 2023
  • Servo-motor driven uniaxial shake tables have been widely used for education and research purposes in earthquake engineering. These shake tables are mostly displacement-controlled by a digital proportional-integral-derivative (PID) controller; however, accurate reproduction of acceleration time histories is not guaranteed. In this study, a control strategy is proposed and verified for uniaxial shake tables driven by a servo-motor. This strategy incorporates a deep-learning algorithm named Long Short-Term Memory (LSTM) network into a displacement PID feedback controller. The LSTM controller is trained by using a large number of experimental data of a self-made servo-motor driven uniaxial shake table. After the training is completed, the LSTM controller is implemented for directly generating the command voltage for the servo motor to drive the shake table. Meanwhile, a displacement PID controller is tuned and implemented close to the LSTM controller to prevent the shake table from permanent drift. The control strategy is named the LSTM-PID control scheme. Experimental results demonstrate that the proposed LSTM-PID improves the acceleration tracking performance of the uniaxial shake table for both bare condition and loaded condition with a slender specimen.

Modeling and PID Control of an Electro-Hydraulic Servo System (전기유압 서보시스템의 모델링과 PID 제어)

  • Lee, Se Jin;Kim, Cheol Jae;Kang, Yong Ju;Choi, Soon Woo;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • The electro-hydraulic training device (TP511) provided by Festo Didactic are widely used, but teaching materials do not include mathematical modeling. Thus, there is a limit for full-scale learning about the electro-hydraulic servo system by using this equipment. In this study, for the purpose of improving students' understanding of the classical control and modern control Festo's electro-hydraulic servo training device (TP511) was mathematically modeled and parameter values were calculated by examining the characteristics of each component. And P, PI, PD, and PID controllers highly used in the industrial field, were designed by using the root locus method to achieve the optimal gains and used for simulation and experiments using the Festo's electro-hydraulic servo training apparatus. The validity of the derived mathematical model and the calculated parameter values were verified through simulation and experiment. It was found that the p control can achieve the control target more effectively than the pid control for Festo's electro-hydraulic servo training system by using the root locus method.